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Abstract 
Introduction: Diabetes mellitus has remained one of the serious health prob-
lems in the world; and oxidative stress has been reported to be a root cause for 
the progression and development of diabetes mellitus and its associated com-
plications. Aim: This study investigated the possible ameliorative effects of 
lycopene on diabetic-induced changes in erythrocyte osmotic fragility and li-
pid peroxidation in Wistar rats. Methodology: The animals were made di-
abetic by single intraperitoneal injection of streptozotocin at 60 mg/kg b w. 
Diabetes was confirmed by the presence of high fasting blood glucose level ≥ 
200 after 72 hours. Thereafter, diabetic rats were randomly assigned into six 
groups (1, 2, 3, 4, 5 and 6) comprising five animals each. Group 1 (Diabetic 
control) and group 2 (Normal control) rats received 0.5 ml of olive oil, groups 
3, 4, 5 rats received 10, 20, 40 mg/kg bw of lycopene respectively, while those 
in group 6 received 2 mg/kg bw of glibenclamide orally once daily for a period 
of four weeks. At the end of the treatment, all animals were sacrificed; blood 
samples collected for determination of erythrocyte osmotic fragility (EOF) 
and lipid peroxidation (LPO). Results: The results obtained showed that there 
was a significantly (P < 0.05) lowered erythrocyte osmotic fragility in diabetic 
animals treated with lycopene when compared with diabetic control group. In 
addition, there was also a significantly (P < 0.05) reduced erythrocyte malon-
dialdehyde concentration, an index of lipid peroxidation in the diabetic 
treated groups when compared with diabetic control group. Conclusion: 
From the available findings, it can be concluded that administration of lycopene 
to diabetic rats attenuated diabetic-induced changes in EOF and LPO and these 
observed effects may be attributed to anti-oxidative property of lycopene. 
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1. Introduction 

Diabetes mellitus is a complex metabolic disorder in the endocrine system cha-
racterized by abnormalities in insulin secretion and/or insulin action that leads 
to the progressive deterioration of glucose tolerance, which causes hyperglycae-
mia [1] [2]. There are two main categories of the disease, type 1 diabetes mellitus 
also called insulin-dependent diabetes mellitus (IDDM) and type 2, the non-in- 
sulin dependent diabetes mellitus (NIDDM) [3]. Several mechanisms are in-
volved in the pathogenesis of diabetes and its complications but the most com-
monly accepted cause of diabetes is the oxidative damage that is caused by free 
radicals [4]. It has been shown that people who have diabetes have higher levels 
of free radicals, which can cause diabetic complications [5]. 

Hyperglycaemia is mediated in large part, by a state of enhanced oxidative 
stress, which results in the excessive production of reactive oxygen species. 
These reactive oxygen species then cause both adverse structural and functional 
changes in tissues [6] including red blood cells. Oxidative stress, mediated 
mainly by hyperglycemia-induced generation of free radicals, contributes to the 
development and progression of diabetes mellitus and its related complications. 
The exact mechanism that leads to the hyperglycaemia-induced membrane lipid 
peroxidation in RBC of diabetics is not known. However, previous studies in a 
cell-free system have suggested that in hyperglycaemia, glucose can enolize and 
thereby reduce molecular oxygen yielding a-keto aldehydes and free radical in-
termediates [7]. 

Red blood cells are distinctive, highly specialized and the most abundant cells 
in humans and contain high levels of both enzymatic and non-enzymatic cytop-
lasmic antioxidants [8]. They are the first cells in the body to be exposed to 
stressful stimuli and hence, prone to oxidative stress [8]. More so, because of its 
role as O2 and CO2 transporter, the erythrocytes are under constant exposure to 
reactive oxygen species (ROS) and oxidative stress [9]. As such, the erythrocytes 
have been used for the evaluation of the impact of free-radical induced oxidative 
stress in humans and animal models because of several reasons. For example, 1) 
these cells are continually exposed to high oxygen tensions, 2) unable to replace 
damaged components, 3) their membrane lipid bilayers are rich in polyunsatu-
rated fatty acids side chains which make them vulnerable to peroxidation and 4) 
they have enzymatic and non-enzymatic antioxidant systems [10]. Management 
of diabetes without any side effects is still a challenge to the medical system. This 
leads to increasing demand for natural products with potent anti-diabetic activi-
ty and fewer side effects [11]. It has been reported that ameliorating oxidative 
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stress using antioxidants might be an effective strategy for the treatment of di-
abetes mellitus and also reducing diabetic complications [12]. The philosophy 
that food can be health promoting beyond its nutritional value is gaining accep-
tance within the public arena and among the scientific community as mounting 
research link diet or food supplements to disease prevention and treatment such 
as in diabetes mellitus. Chemoprevention by dietary means continues to attract 
major attention in the management of chronic diseases such as of diabetes mel-
litus [13]. 

Lycopene being an antioxidant has been suggested to protect critical biomo-
lecules including lipids, protein and DNA from free radicals [14]. However, 
there is paucity of information on the benefit of lycopene in the management of 
diabetes mellitus. There has been increased interest in finding naturally occur-
ring antioxidants for use in pharmaceutical applications, which can protect the 
human body from free radicals and retard the progress of many diseases such as 
diabetes mellitus and lycopene is one of such. This compound has great impor-
tance for their ability to prevent oxidation and is usually used as major ingre-
dients in foods [15]. Oxidative stress is itself known to be a root cause for the 
progression and development of many diseases such as diabetes mellitus and its 
associated complications [16] [17]. 

Glibenclamide is one of the members of the sulfonylurea class of drugs whose 
therapeutic benefits as oral hypoglycemic agents date back to the 1960s [18]. The 
drug exerts its effect by binding to and inhibiting the ATP-sensitive potassium 
channels (KATP) inhibitory regulatory subunit sulfonylurea receptor 1 (SUR1) in 
pancreatic beta cells. This inhibition results to cell membrane depolarization and 
opening voltage-dependent calcium channels thus resulting to an increase in 
intracellular calcium in the beta cell and subsequent stimulation of insulin re-
lease [19] [20] [21] [22].Therefore, the present investigation explored the possi-
ble ameliorative effects of lycopene administration in diabetic-induced changes 
in erythrocyte osmotic fragility and lipid peroxidation in Wistar rats. 

2. Materials and Methods 
2.1. Materials 
2.1.1. Animal Care 
Adult Wistar rats of both sexes that weighed between 150 and 200 g were pur-
chased from the Animal House of the Department of Human Physiology, Ah-
madu Bello University, Zaria, Kaduna State, Nigeria. The animals were kept and 
maintained under the optimal laboratory conditions of temperature, humidity 
and light; and in clean Aluminum cages, where they were fed on standard com-
mercial rat pellets (Vital Feeds) with free access to drinking water. 

2.1.2. Chemicals and Lycopene 
Streptozotocin was purchased from Sigma chemicals (St Louis U.S.A), while Ly-
copene (30 mg capsule, General Nutrition Corporation, Pittsburgh, U.S.A.) was 
procured from live well Pharmacy, Ceddi Plaza Central Area, Abuja, Federal 
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Capital Territory, Nigeria. It was reconstituted in olive oil (Goya en espana, 
S.A.U., Savilla, Spain) to appropriate working dosage. All other chemicals and 
solvents used were of analytical grade. 

2.2. Methods 
2.2.1. Preparation of Lycopene Solution 
30 mg of lycopene in a gelatinous capsule (General Nutrition Corporation, 
Pittsburgh, U.S.A) was reconstituted in olive oil (Goya en espana, S.A.U., Sevilla, 
Spain) to appropriate working doses as described by [23] with little modifica-
tions to obtain the required doses that were eventually used in the study. 

2.2.2. Experimental Induction of Diabetes Mellitus 
Diabetes was induced by single intraperitoneal injection of 60 mg/kg body 
weight dose of streptozotocin (STZ) dissolved in freshly prepared 0.1 M cold ci-
trate buffer of pH 4.5 into the animals. The animals were starved of feeds for 18 
hrs prior to diabetes induction but were allowed access to drinking water. Se-
venty-two hours after streptozotocin injection, blood was drawn from tail vein of 
the rats. Animals having fasting blood glucose levels ≥ 200 mg/dL were consi-
dered diabetic and used in the study. Thereafter, diabetic animals were randomly 
assigned into different groups according to the design of the study. 

2.2.3. Experimental Design 
A total of thirty (30) Wistar rats of both sexes were used in the study. They 
comprised of twenty-five (25) diabetic and five (5) normal (control) rats. The 
animals were randomized into six (6) groups of five (5) rats each. 

Group 1: Normal control (NC) rats that were administered with 0.5 ml/kg 
body weight of olive oil. 

Groups 2: Diabetic control (DC) group that received 0.5 ml/kg body weight of 
olive oil. 

Group 3: Diabetic rats that received 10 mg/kg body weight of lycopene. 
Group 4: Diabetic rats that received 20 mg/kg body weight of lycopene. 
Group 5: Diabetic rats that received 40 mg/kg body weight of lycopene. 
Group 6: Diabetic rats that received 2 mg/kg body weight of Glibenclamide. 
30 mg lycopene in a gelatinous capsule was reconstituted in olive oil to ap-

propriate working doses as described by Ogundeji et al. [23] with little modifica-
tions. All treatments were administered orally once daily for a period four (4) 
weeks. 

2.2.4. Determination of Erythrocyte Osmotic Fragility 
Determination of erythrocyte osmotic fragility was based on the method de-
scribed by Faulkner and King [24] and modified by Oyewale [25]. It is an indi-
rect method of determination of oxidative stress status. Briefly, 1 mL of freshly 
obtained blood which was collected into heparinized sample bottles from each 
rat was pipette into a set of test tubes containing 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 g/dL of 
sodium chloride stock solution (pH 7.4). This was followed by careful mixing 
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and incubation for 30 min at room temperature (18˚C - 25˚C). Thereafter, the 
test tubes were centrifuged at 800 g for 10 minutes using a centrifuge IEC HNSH 
(Damon/IEC Division, UK). The supernatant was transferred into a glass cu-
vette. The concentration of haemoglobin in the supernatant was measured colo-
rimetrically by reading the absorbance at a wavelength of 540 nm using a spec-
trophotometer (Jenwey, 6405, Japan). The percentage haemolysis was calculated 
using the following formula: 

Optical density of test solutionPercentage haemolysis 100
Optical density of standard water

= ×  

2.2.5. Determination of Erythrocyte Malondialdehyde Concentration 
To evaluate the erythrocyte malondialdehyde concentration, which is an index 
of lipid peroxidation, heparinzed blood samples (2 ml) obtained from each rat 
was centrifuged at 3000 g for 5 minutes, and the plasma discarded. By washing 
erythrocytes three times in cold isotonic saline (0.9%, w/v), erythrocyte packets 
were prepared and used to assay for MDA concentrations using the double- 
heating method of Draper and Hadley [26], as modified by [27]. The principle of 
the method was based on spectrophotometric measurement of the colour pro-
duced during the reaction to thiobarbituric acid (TBA) with MDA. The concen-
tration of MDA was calculated by the absorbance coefficient of MDA–TBA 
complex, 1.56 × 105 cm−1∙M−1, and expressed in nanomoles per gram of hae-
moglobin. The method of Dacie and Lewis [28] was used to evaluate the hae-
moglobin concentration in the washed erythrocytes. 

2.3. Statistical Analysis 

Data obtained from each group were expressed as mean ± SEM of five determi-
nations. The data were analyzed statistically using ANOVA with Tukey’s Post 
hoc test to compare the levels of significant between the control and experimen-
tal groups. All statistical analysis was evaluated using SPSS version 17.0 software 
and Microsoft Excel (2007). The values of p ≤ 0.05 were considered as signifi-
cant. 

3. Results 
3.1. Effect of Lycopene Treatment on Erythrocyte Osmotic  

Fragility 

The percentage erythrocyte osmotic fragility decreased significantly with in-
creasing NaCl concentration. There was complete (100%) haemolysis at 0.0 and 
0.1% of NaCl. And there was also no significant changes in erythrocyte osmotic 
fragility were observed at 0.0% and 0.1% of Na Cl (distilled water) in all control 
and experimental groups when compared. However, significant (P < 0.05) 
changes in percentage erythrocyte fragility were recorded at 0.3%, 0.5%, 0.7% 
and 0.9% of Nacl concentrations, when compared with the corresponding di-
abetic control group (Figure 1). At 0.3% NaCl concentration, the erythrocyte 
osmotic fragility of the diabetic control animals was significantly (P < 0.05)  
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Figure 1. Effects of lycopene treatment on erythrocyte osmotic fragility. Each bar 
represent mean of five animals. Bars with different superscript letters (a, b, c, d) differ 
significantly (P < 0.05) compared with the control groups, while bars with the same su-
perscript letters are not significantly different (P > 0.05) compared with the control 
groups. DC + OL = Diabetic rats treated with olive oil, NC + OL = Normal (Non-diabet- 
ic) rats treated with olive oil, D+LYC10 mg/kg = Diabetic rats treated with 10 mg/kg of 
lycopene, D + LYC 20 mg/kg = Diabetic rats treated with 20 mg/kg of lycopene, D+LYC 
40 mg/kg = Diabetic rats treated with 40 mg/kg of lycopene and D + GLB 2 mg/kg = Di-
abetic rats treated with glibenclamide 2 mg/kg. 
 
higher (98.40% ± 0.51%) than those obtained in the normal control group 
(89.60% ± 1.17%). Following oral treatment with graded doses of lycopene and 
glibenclamide, the study recorded a significantly (P < 0.05) dose dependent de-
crease in erythrocyte osmotic fragility of (97.60% ± 1.17%, 94.00% ± 1.82%, 
86.20% ± 1.49%) and (80.40% ± 6.52%) at 0.3% NaCl concentration, when 
compared with the diabetic control group. However, glibenclamide appeared to 
have a better effect than the lycopene treated groups especially at 0.3% NaCl 
concentration. Similarly, at 0.5%, 0.7% and 0.9% NaCl concentrations, a signifi-
cant (P < 0.05) increase in the erythrocyte osmotic fragility of (32.00% ± 1.00%, 
11.80% ± 0.66% and 7.60% ± 0.51%) was recorded in the diabetic control ani-
mals when compared with those obtained in the normal control rats (8.20% ± 
0.74%, 2.00% ± 0.32% and 1.20% ± 0.20%). Treatment of diabetic animals with 
lycopene and glibencalmide produced a significantly (P < 0.05) lower erythro-
cyte osmotic fragility of (12.20% ± 0.66%, 8.80% ± 0.3%7, 8.40% ± 0.75% and 
10.6% ± 1.25%), (3.00% ± 0.45%, 2.00% ± 0.32%, 1.60% ± 0.25% and 3.40% ± 
0.75%) and (1.60% ± 0.25%, 1.80% ± 0.49%, 1.40% ± 0.25% and 1.40% ± 0.25%), 
when compared with the diabetic untreated group (Figure 1). 

3.2. Effect of Lycopene Treatment on Erythrocyte MDA  
Concentration 

The erythrocyte MDA concentrations an index of lipd peroxidation was signifi-
cantly increased (P < 0.05) in the diabetic untreated group (2.10 ± 0.14 µmol/g 
Hb), when compared to those obtained in the normal control animals (1.10 ± 
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0.09 µmol/g Hb). The erythrocytes MDA concentration of all lycopene and gli-
benclamide treated diabetic animals was significantly (P < 0.01) decreased (1.48 
± 0.07, 1.26 ± 0.08, 1.02 ± 0.09 µmol/g Hb) and (1.44 ± 0.11 µmol/g Hb), when 
compared with diabetic control group that recorded (2.10 ± 0.14 µmol/g Hb) 
(Figure 2). 

4. Discussion 

In the present study, single intra-peritoneal injection of streptozotocin (STZ) ef-
fectively induced diabetes mellitus in rats, which was confirmed by the presence 
of sustained elevated fasting blood glucose levels 72 hrs after STZ administration 
in the animals. This result agrees with the findings of previous researchers [29] 
[30] [31] [32], who demonstrated that fasting blood glucose levels increased sig-
nificantly 72 hrs following STZ injection to experimental animals. STZ induces 
diabetes which resembles human hyperglycaemic non-ketotic diabetes mellitus 
in animal models [33]. Also, STZ selectively destroys the insulin producing β- 
cells of the Islet of Langerhans which is accompanied by characteristic altera-
tions in blood insulin and glucose concentrations [34]. 

Oral administration of graded doses of lycopene (10, 20 and 40 mg/kg b w) 
have been shown to significantly reduce the elevated fasting blood glucose levels 
in streptozotocin-induced diabetic rats, as demonstrated by previous researchers 
 

 
Figure 2. Effects of lycopene treatment on erythrocyte malondialdehyde concentration. 
Each bar represents mean of five animals. Bars with different superscript letters (a, b, c, d, 
e) differ significantly (P < 0.05) compared with the control groups, while bars with the 
same superscript letters are not significantly different (P > 0.05) compared with the con-
trol groups. DC + OL = Diabetic rats treated with olive oil, NC + OL = Normal (Non- 
diabetic) rats treated with olive oil, D + LYC10 mg/kg = Diabetic rats treated with 10 
mg/kg of lycopene, D + LYC 20 mg/kg = Diabetic rats treated with 20 mg/kg of lycopene, 
D + LYC 40 mg/kg = Diabetic rats treated with 40 mg/kg of lycopene and D + GLB 2 
mg/kg = Diabetic rats treated with glibenclamide 2 mg/kg. 
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[35] [36] [37] [38]. Thus suggesting that lycopene may exhibit its antioxidant ef-
fect probably through scavenging of free radicals released from glucose auto- 
oxidation resulting from sustained hyperglycemia. 

Erythrocyte is one of the main cells used as an oxidative stress marker in liv-
ing animals, including humans, because their cell membranes are sensitive to the 
presence of free radicals in general [39]. Erythrocyte membranes are critical tar-
get in the lipid peroxidation process due to constant exposure to high oxygen 
tension and elevated polyunsaturated fatty acids (PUFA) in their membrane 
[40], coupled with their inability to possess nucleus and other organelles [41]. 
The result obtained in the present investigation showed a significantly increased 
erythrocyte MDA concentration, an index of lipid peroxidation in the erythro-
cyte membrane of diabetic control animals, when compared to those obtained in 
the normal control group. This significant increase in erythrocyte MDA concen-
tration in STZ-induced diabetic control rats indicates that hyperglycaemic in-
creased free-radical induced lipid peroxidation in the erythrocytes and their 
membranes. These findings have been supported by data obtained from other 
researchers [42] [43] [44] who have demonstrated increased lipid peroxidation 
and protein oxidative damage as evidenced by higher MDA concentration in the 
erythrocytes of STZ-induced diabetic rats. Similarly, Sushi [7] has also reported 
hyperglycemia-induced membrane lipid peroxidation in human erythrocytes. 
The exact mechanism that leads to the hyperglycaemia-induced membrane lipid 
peroxidation in RBC of diabetics is not known. However, previous studies in a 
cell-free system have suggested that in hyperglycaemia, glucose can enolize and 
thereby reduce molecular oxygen yielding a-keto aldehydes and free radical in-
termediates [7]. 

Red blood cells (RBCs) which are unique, highly specialized and the most ab-
undant cells in the human organism have been reported to be highly susceptible 
to oxidative damage due to the high cell concentration of oxygen and hemoglo-
bin, a powerful promoter of the oxidative process [8]. RBCs are one of the first 
cells to be affected by adverse conditions [45]. Circulating red blood cells act as a 
sink for free radicals since both superoxide radicals ( )2O−  and hydrogen pe-
roxide (H2O2) have the ability to penetrate membranes of the cells [46]. They are 
also subject to a continuous flux of O2 and H2O2, which results from auto-oxi- 
dation of haemoglobin [46]. However, lycopene treatment to diabetic rats atte-
nuated the increased erythrocytes MDA concentration observed in the present 
study. This suggests that lycopene may be beneficial in ameliorating hypergly-
caemia-induced oxidative damage to erythrocytes. This effect of lycopene may 
be attributed to its high oxygen-quenching capacity and singlet molecular oxy-
gen (O2) and peroxyl radical-scavenging ability [47], which consequently con-
tribute to the defence against lipid peroxidation as reflected by significantly de-
creased erythrocytes MDA concentration observed in the present investigation. 

Furthermore, RBCs also contain high levels of both enzymatic and non-en- 
zymatic cytoplasmic antioxidants [8]. They are usually the first cells in the body 
to be exposed to stressful stimuli and hence, prone to oxidative stress [8]. In ad-
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dition to its role as O2 and CO2 transporter, the erythrocytes are under constant 
exposure to reactive oxygen species (ROS) and oxidative stress [9]. Indeed, the 
erythrocytes have been used for the evaluation of the impact of free-radical in-
duced oxidative stress in humans and animal models because of several reasons. 
For example, 1) these cells are continually exposed to high oxygen tensions, 2) 
unable to replace damaged components, 3) their membrane lipid bilayers are 
rich in polyunsaturated fatty acids side chains which make them vulnerable to 
peroxidation and 4) they have enzymatic and non-enzymatic antioxidant sys-
tems [10]. 

The results of the present investigation showed that a significantly increased 
erythrocyte osmotic fragility were recorded at 0.3%, 0.5%, 0.7% and 0.9% of 
NaCl concentrations in streptozotocin-induced diabetic untreated animals when 
compared with those obtained in the normal control group. This finding corro-
borates the reports of other investigators who showed that erythrocyte osmotic 
fragility was significantly increased in streptozotocin-induced diabetic animals 
[48] [49] [50]. This current finding indicates the ability of streptozotocin-in- 
duced hyperglycaemia to compromise the integrity of the red blood cell mem-
brane. The normal function of the RBC is largely hinged on the maintenance of 
the integrity of its membrane. The vulnerability of the red blood cell membrane 
integrity which resulted to increased erythrocyte fragility in the diabetic un-
treated group may have arisen from the increased lipoperoxidative (MDA) 
changes in the erythrocyte membranes as evidenced by increased MDA concen-
tration in the erythrocytes of diabetic untreated animals observed in the present 
study. These results agree with findings of other researchers [51] [52] [53] that 
reported a significant positive correlation between the hyperglycaemia-induced 
membrane lipid peroxidation and the increased osmotic fragility of the erythro-
cyte membrane, which can cause changes in the properties of the RBC mem-
brane and erythrocytes of STZ-induced diabetic rats. Erythrocyte is a convenient 
model to study oxidative damage of cell membranes by various pro-oxidants as 
well as the chemicals [54]. ROS-catalyzed oxidative damage to membrane lipids 
may impair the stability of erythrocytes and cause oxidative hemolysis or os-
motic fragility [55]. 

More so, the erythrocyte membrane has been shown to be highly sensitive to 
oxidative stress as it contains high amount of polyunsaturated fatty acids as well 
as higher concentration of oxygen and heme [56]. On the other hand, erythro-
cyte osmotic fragility test gives an in-vitro measure of the tensile strength of 
erythrocyte membrane and it is an indirect method of evaluating lipid peroxida-
tion in animals [57]. It is a measure of erythrocyte strength and its ability to 
withstand varying osmotic gradients and it has being reported to be increased 
during oxidative stress [58] [59]. The greater the erythrocyte osmotic fragility, 
the weaker the tensile strength of erythrocyte membrane [23]. Similarly, hyper-
glycaemia associated with diabetes has been shown to increase the erythrocyte 
osmotic fragility and membrane lipid peroxidation in human erythrocytes [60]. 
Increased MDA level has been known to be associated with increased fragility of 
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erythrocytes during oxidative stress [60]. The mechanisms for increased fragility 
of erythrocytes have been reported to be due to increased glycosylation of the 
erythrocyte membrane protein or/and alteration of the Na+/K+ ATPase on the 
erythrocyte membrane [50]. Administration of graded doses of lycopene and 
glibenclamide to diabetic animals recorded a significantly dose dependent de-
crease in percentage erythrocyte osmotic fragility, suggesting that lycopene and 
glibenclamide conferred some degree of stability to the erythrocytes of the di-
abetic rats when compared with the diabetic control group. The results are con-
sistent with the observation of other researchers [61] [62] [63] [64] who showed 
that lycopene administration improved oxidative stress-induced lipid peroxida-
tion in rats. Moreso, the increasing erythrocyte osmotic resistance (or less os-
motically fragile) observed in the diabetic animals treated with lycopene shows 
the protective ability of lycopene against increased osmotic stress of the eryt-
hrocytes; that is, increasing hypotonicity. Hence, the observed effect in the cur-
rent study may also be due to the ameliorative effects or/and anti-oxidative ac- 
tivities of lycopene on the erythrocyte oxidative damage associated with diabetes. 
This finding may be attributed to strong antioxidant property of lycopene [65]. 
Furthermore, another mechanism by which lycopene reduces the erythrocyte 
osmotic fragility in diabetic animals may probably be by mopping up free radi-
cals that are usually involved in the destruction of membrane protein and lipid 
peroxidation. The finding in the present investigation which positively corrobo-
rates with same in erythrocyte MDA concentration, showed a significantly re-
duced lipid peroxidative (MDA) level in diabetic rats treated with lycopene. 

5. Conclusion 

The present study confirmed the involvement of oxidative stress in the progres-
sion of diabetes; and the findings obtained demonstrated that lycopene ameli-
orated the diabetic-induced alterations in erythrocyte osmotic fragility and lipid 
peroxidation in Wistar rats. 
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