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Abstract- The flow of a fluid of grade three between heated 

parallel plates is examined. It is assumed that the fluid is 
temperature-dependent and reacts satisfying  Arrhenius law. We 
employed Galerkin weighted residual method to solve the 
resulting non-linear equations. The results show the effects of 
Br Brinkman number, which is the parameter that controls the 
viscous dissipation,  which is the non-Newtonian parameter. 
The result shows that the velocity of the flow decreases as 

Brinkman number, 1M  and increases. The temperature of 

the flow decreases with increase in iKamenetskiFrank 
parameter. We also deduce from the result that 

iKamenetskiFrank  parameter has considerable effects 
on the temperature profile of the system. 

 
Keywords:  Non-Newtonian fluid, Weighted residual method, 

Third grade fluid and Arrhenius reaction. 

I. INTRODUCTION 
The study of heat transfer and thermal stability of reactive 
non-Newtonian fluids is extremely important for the safety 
and proper handling of materials during processing.  Non-
Newtonian fluids have received much attention than 
Newtonian fluids in the recent years due to  its practical 
importance, rapid development of modern  industrial 
materials and technological applications. It has given insight 
in the understanding dynamics of terrestrial heat flow 
through aquifer, hot fluid and ignition front displacements in 
the reservoir engineering, heat exchange between soil and 
atmosphere, flow of  moisture through porous industrial 
materials, heat exchangers with fluid beds, fiber coating  
and granular insulation materials, packed-bed chemical 
reactors, preheating coal-water mixture, ceramic processing 
,catalytic reactors, polymer solution, molten plastics, oil 
recovery, to mention but just a few applications.  
Heat transfer problem of third grade fluids without heat 
source has been studied by several authors: Hayat et al [1] 
considered partial slip effect on the flow and heat transfer 
characteristics in a third grade fluid. Fosdick and Rajagopal 
[2] performed a complete thermodynamic analysis of 
constitutive equations for the third grade fluid involving 
heat transfer process. Massoudi and Christie [3] analyzed 
numerically the flow of a third grade fluid in a pipe without 
heat source where the shear viscosity was assumed to be 
temperature dependent . Olajuwon [4] examined the flow 
and natural convection heat transfer in a power-law fluid 
past a vertical plate with heat generation.  
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Yurusoy  et al [5] examined entropy analysis for third grade 
fluid flow with Vogel’s models of viscosity in annular pipe. 
Nadeem et al [6] analytically considered  the effects of 
partial slip on a fourth grade fluid with variable viscosity 
and Makinde [7] employed Hermite-Pade approximations to 
evaluate thermal radiation effect of inherent irreversibility in 
a variable viscosity channel flow. Massoudi and Christie [8] 
studied the effects of variable viscosity and viscous 
dissipation on the flow of third grade fluid in a pipe. 
Nadeem et al [9] studied analytical solutions for pipe flow 
of a fourth grade fluid with Reynolds and Vogel’s models of 
viscosities.  Nadeem et al [10] examined the influence of 
heat and mass transfer on peristaltic flow of a third order 
fluid in a diverging tube. 
Furthermore, Truesdell and Noll [11] analyzed the non-
linear field theories of mechanics. Frank-Kamenetskii  
theory allowed for the temperature gradient to be taken into 
account, i.e. there  could be a considerable resistance to heat 
transfer in the reacting system, or the system has reactants 
with low thermal conductivity and highly conducting walls. 
Jayeoba and Okoya [14]   employed  approximate analytical 
solutions for pipe flow of a third grade  fluid with 
models of viscosities and heat generation/absorption. Rilvin 
and Ericksen [12] analyzed stress deformation relation for 
isotropic materials. Motivated by the work of   Szeri  and  
Rajagopal [13] which examined the effects of variable 
viscosity parameter and viscous dissipation parameter  on 
the flow of a Non-Newtonian fluid between heated parallel 
plates. Their results show that the temperature and velocity 
distribution remain sensibly invariant with respect to the 
variable viscosity parameter. Lazarus [15] studied  the 
effects of variable viscosity on the velocity fluid and 
temperature fluid using semi-implicit finite difference 
scheme of Laminar flow in a channel filled with saturated 
porous media. The results show that  the velocity fluid and 
temperature fluid increases as variable viscosity parameter 
increases. Haroon et al [16] examined analysis of poiseuille 
flow  of a reactive power-law fluid between parallel plates. 
The results show that the shear thinning/thickening behavior 
depends on the power-law index and the pressure gradient. 
There are manifestations of fluid behavior which cannot be 
adequately explained on the basis of the classical, linearly 
viscous model. Several constitutive equations have been 
suggested to characterize such non-Newtonian behavior. In 
this work, we considered a fully developed, steady flow, 
reacting flow of an incompressible, reactive Power-law 
fluid, homogeneous fluid  of fluid of third grade, thermal 
conductivity which is an exponential function of the fluid 
mean temperature and the fluid reacts according to 
Arrhenius law between two heated parallel plates, due to an  
external pressure gradient along the plates. The plates are 
located in the hz   and 
 hz   planes, respectively, of an orthogonal Cartesian 
coordinate system. 
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Following Szeri  and  Rajagopal [13] an  incompressible, 
homogeneous fluid of third grade is characterized by 
Cauchy stress   of the following form: 

     
        .1
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    (1) 
where pI denote the indeterminate part of the stress due 

to the constraint of incompressibility  T is the coefficient 

of viscosity and    TT 21 ,  are material moduli, 
usually referred to as normal stress coefficients. The 
kinematic tensors 1A , 2A  are defined by [2] through 

   vgradvgradA 1               
                  (2) 

    .3,2111   nAvgradvgradAA
dt
dA n

T
nnn

                              (3) 

Here 
dt
d

denotes material time derivative and v is the 

velocity vector. The above model contains, as a special 
subclass, the classical linearly viscous model (the case when 
all the coefficients expect  are set equal to zero).  
The thermodynamics and stability of model (1) has been 
studied in detail [13]. The thermodynamic compatibility in 
the sense that all motions of the fluid meet the  Clausius- 
Duhem inequality, which is generally interpreted as a 
statement of the second law of thermodynamics, and the 
assumption that the specific Helmholtz free energy of the 
fluid be a minimum when the fluid is in “equilibrium”, 
places restrictions on the structure of the constitutive 
equations which model the fluid. It has been shown 
(Theorem 2 [3]) that the response functions qand,  
for specific Helmholtz free energy, the stress and the heat 
flux, respectively, of an incompressible, homogeneous fluid 
of third grade are compatible with thermodynamics only if 
(i) the viscosity  T  is non-negative,   ,0T

                                 (4) 
(ii) the normal stress coefficients    TandT 21   

meet the requirements,
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                                              (5) 
(iii) the material coefficients      TandTT 321 ,   

satisfy       0,0,0 321  TTT   
                       (6) 

(iv) the specific Helmholtz free energy  has the form  

      21
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                                   (7) 
In the above expressions 

   ,vgradL    
                      (8) 

 denotes the density and A  denotes the trace norm of A
. 

In our analysis we assume that the fluid is 
thermodynamically compatible ; hence the stress 
constitutive relation (1) reduces to 

         .1
2
1

2
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                                                 (9) 

II. GOVERNING EQUATIONS AND METHOD OF 
SOLUTION 

Following [14] and neglecting porosity term the governing 
equations are  conservation of mass, conservation of 
momentum and conservation of energy for an 
incompressible fluid. For the problem under consideration, 
flow of  a thermodynamically compatible fluid of third 
grade  between heated plates at ,hzandhz   the 
lower plate is stationary and the upper plate is moving with 
a constant speed ,U respectively we seek velocity fields of 
the form : 
   iyuv      
      (10) 
where  i denotes the unit vector in the x coordinate 
direction, the direction that is chosen parallel the external 
pressure gradients. 
In the absence of body forces, the balance of linear 
momentum 
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 (Equation of Motion)   (11) 
where K is the porous medium permeability 
reduces to  
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under the condition (10). In deriving the above, we made 
use of the fact that the fluid is incompressible and is hence 
constrained to satisfy 
  .0vdiv    
      (15) 
Defining the modified pressure 
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equation (12) takes the simpler form 
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as   xpp


 only.    
                               (18) 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 
ISSN: 2278-3075, Volume-3, Issue-11, April 2014 

139 Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

Having found the equation of motion (17), neglecting the 
reaction term [14] presented the energy equation as follows: 

  TQr
K
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qdivL
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de ef  
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      (19) 
Subject to the boundary conditions 
    Uthuthu  ,,0,    

      (20) 
    wb TthTTtT  ,,,0  

Here e denotes the internal energy, L is the velocity 
gradient, r is the radiant energy, both per unit mass and 

 TQ  denotes the reacting term. 
It follows from (8) and (9) that  
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      (21) 
We assume that the heat flux vector q is given by Fourier’s 
law 
 Tgradkq      
      (22) 
where  the minus sign is introduced to account for the fact 
that the heat is conducted from high temperature to a low 
temperature, so that  Tgrad  inherently negative; 
therefore the double negative indicates a positive flow of 
heat in the direction of decreasing temperature,  Tkk 
denotes the thermal conductivity. We now turn our attention 
to the contribution by internal energy of the energy 
equation. Since the internal energy is related to the specific 
Helmholtz free energy through  
 Te  ,    
      (23) 
where   is the entropy, it follows that  
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      (24) 
If the fluid is thermodynamically compatible, then the 
specific energy is related to the specific Helmholtz free 
energy through [3] 
  T ,    
      (25) 
where the suffix denotes differentiation with respect to that 
variable. It follows (24) and (25) that  
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      (26) 
We now employ two schemes when dealing with equation 
(19) 
(1) In the first instance we allow  

 yxTT ,      
      (27) 

but keep the material properties of the fluid constant. 
Substituting (26) into (19) under this restriction, we find on 
neglecting the radiant heating  
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If we now neglect heat conduction along the flow in 
comparison with heat conduction normal to the plates and 
put 
    11 ,, ATCATT TT   

where 0C is the specific heat of the material, we obtain 
the  appropriate form of the energy equation  
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   (29) 
This is a partial differential equation in  yxT , , but can be 
reduced to an ordinary differential equation via a similarity 
transformation that is readily available under the assumption 
of constant heat flux at the walls. 

Let  xTT ww   denote the temperature at the walls, i.e. 

     xThxTxT w ,0, , and let  xTb  represent the 
fluid bulk temperature, defined by  
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then the similarity transformation that reduces (29) to an 
ordinary differential equation is 
          xTxTxTyTyxT wwb ,  . 
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Here  yT  is a similar temperature. The non-dimensional 

coordinates y and other non-dimensional quantities are 
defined through  
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and the characteristic velocity V is given by        
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Substituting (32) into (29) we obtain 
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If now the heat flux at the walls 

  bww TTq      
      (35) 
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is a constant and if the film heat transfer coefficient  is 
independent of x  
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   (36) 
The appropriate form of the equation of motion, obtained by 
substituting (32) into (17),is  
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Following [14,17] equations (36) and (37) are to be solved 
subject to the boundary conditions: 
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to obtain solutions at constant heat flux and constant fluid 
properties. 
We now proceed to solve equations (36) and (37) subject to 
(38) and (39)  numerically using Galerkin-Weighted 
Residual Method as follows:  
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A maple 14  pseudo code was used to perform the iterative 
computation and results are presented in Figures 1 and 2 as 
follows: 

 
Fig.1: Graph of the velocity  function u  against the 
similarity variable y when 5.0,5.0  DaBr  

 
Fig.2: Graph of the temperature  function   against the 

similarity variable y of 

0,1.0,25.0;0,5.1;5.0   CDaBr . 
 
(11) In the second instance we allow the material 
properties of the fluid to be temperature dependent but 
require the temperature to satisfy the constraint 

 yTT      (41) 
Then by virtue of (26) and (41) 

 0
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substituting (22) and (25) into (19), in the absence of radial 
heating with the inclusion of the reaction term we 
considered the energy equation in the following form 
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where Q - Heat release per units mass, E -Activating 
energy, R -Universal gas constant. 
To non-dimensionalize (44) we introduce the following 
variables and parameters 
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as contained in [14,17]   

Here       3;  and the characteristic 
velocity V is given in (33), but with 

   handreplacing   21 0,  are the 
wall temperatures at the lower and upper plate respectively. 
Substituting (45) into (44) dropping the bars we obtain  
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being iKamenetskiFrank   parameter for the system.  
From equation (25) we seek variable thermal conductivity 
 Tk  of the form  

   ekTk 0     (47) 
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Equation (46) is to be solved subject to the dimensionless 
boundary conditions: 
    01,00       (49) 

We now proceed to solve equations (38) and (46) subject to 
(39) and (48)  numerically using Galerkin-Weighted 
Residual Method as follows:  

let
  y
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i

i
i

i
yi
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






 
4

5
2

0

2

0

,   (50) 

A maple 14  pseudo code was used to perform the iterative 
computation and results are presented in Figures 3 and 4 as 
follows: 

 
Fig.3: Graph of the velocity function u  against the 

similarity variable y of when 0,1.0,1.0,5.0  BrC  

 
Fig.4: Graph of the temperature  function   against the 

similarity variable y of 1.0,25.0;0,5.1;5.0  CDaBr   

III. DISCUSSION OF RESULTS/CONCLUSION 
The study of heat transfer and reactive non-Newtonian 
fluids is extremely important due to its   wide variety of 
practical applications in processes such as filtration of 
polymer solutions and soil remediation through the removal 
of liquid pollutants. From Fig.1  the result shows that the 
velocity increases as non-Newtonian parameter increases. It 
is noticed from Figure 2 that the temperature profile 
decreases as variable thermal conductivity parameter 
increases. We observed from Figure 3 that the velocity 
profile increases as Darcy parameter increases. We  noticed  
from Fig.4 that as  iKamenetskiFrank  parameter 
increases the temperature profile decreases. 

IV. CONCLUSION 
A comprehensive set of graphical results for velocity profile 
and temperature profile are discussed. It is observed that 
velocity fluid and the temperature fluid decreases as 

iKamenetskiFrank  parameter decreases. A transient 
increase in both the fluid velocity and temperature is 
observed with increase in  non-Newtonian parameter, 
Br  Brinkman number and Darcy  number which decreases 
the porosity in the system of flow.  
 For engineering purpose, the flow  model of our problem 
represents the oils well and as the 

iKamenetskiFrank   parameter is increasing there is 
quick recovery of oil from the oils well. Also,  the results of 
this problem are of great interest in production processing, 
for the safety of life and proper handling of the materials 
during processing. 
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