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Abstract: In this work, effects of variable viscosity and #emius reaction on
the third grade fluid over a radiative surface thgh a porous medium is
considered. The governing partial differential etjoas were transformed into
ordinary differential equations in terms of suitab$imilarity variable. We
employed Galerkin weighted residual method to stiteeresulting non-linear
equations. The effects of variable viscosity patemeFrank-Kamenetskii
parameter, Brinkman number, Reynolds number, Ptamgdnber and Darcy
number on the system of flow and the results wegerted graphically.
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I ntroduction

Non-Newtonian fluids have received much attentlemtNewtonian fluids in the recent years due to
its practical importance, rapid development of mmadéndustrial materials and technological
applications. It has given insight in the reserveirgineering, heat exchange between soil and
atmosphere, flow of moisture through porous indailstmaterials, heat exchangers with fluid beds,
preheating coal-water mixture, ceramic processicagalytic reactors, polymer solution, molten
plastics, oil recovery, to mention but just a fgeplications. Some materials behave non-Newtonianly
namely mud, pasta, cheese, personal care prodyttaly, ice cream, oils and the host of others. The
rheological characteristics of polymer melts andutsans together with the attributes of some
polymeric substances, which has lead to the reeemid-wide processing of polymer. The
rheological behaviour of all the non-Newtonian disiicannot be determined by a single constitutive
equation.
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Heat transfer problem of third grade fluids hasnbsterdied by several authors: Makinde and Aziz [1]
considered the boundary layer flow of viscous nmmbf bounded by a stretching sheet.
Mukhopadhyay [2] examined the boundary layer flowd dneat transfer towards an exponentially
stretching porous sheet embedded in a porous medushnendu et al [3] considered similarity
solution of mixed convective boundary layer slipwlover a vertical plate. Fosdick and Rajagopal [4]
performed a complete thermodynamic analysis of ttotise equations for the third grade fluid
involving heat transfer process. Massoudi and @&r[8§] analyzed numerically the flow of a third
grade fluid in a pipe without heat source where gshear viscosity was assumed to be temperature
dependent. Olajuwon [6] examined the flow and ratoonvection heat transfer in a power-law fluid
past a vertical plate with heat generation. Yurusogl [7] examined entropy analysis for third grad
fluid flow with Vogel's models of viscosity in anfar pipe. Nadeem et al [8] analytically considered
the effects of partial slip on a fourth grade fluwith variable viscosity and Makinde [9] employed
Hermite-Pade approximations to evaluate thermalatiath effect of inherent irreversibility in a
variable viscosity channel flow. Massoudi and Giei$10] studied the effects of variable viscosity
and viscous dissipation on the flow of third grfldéd in a pipe. Nadeem et al [11] studied anabttic
solutions for pipe flow of a fourth grade fluid witReynolds and Vogel's models of viscosities.
Lazarus [12] examined the effects of variable s#yoon the velocity fluid and temperature fluid
using semi-implicit finite difference scheme of Liaar flow in a channel filled with saturated porous
media. The results show that the velocity fluid amchperature fluid increases as variable viscosity
parameter increases. Motivated by the work of Hayadl [13] they considered the effect of joule
heating and thermal radiation in flow of third geditlid over a radiative surface.

Following Szeri and Rajagopal [4] an incompressid®mogeneous fluid of third grade is
characterized by Cauchy stres=f the following form:

r=—pl+u(T)A +a,(T)A, +a,(T)A?

+B(T)A + B (TIAA, + AAL+ B, (T)rAZ)A. &

where — pl denote the indeterminate part of the stress dtleetoonstraint of incompressibili,ty(T)
is the coefficient of viscosity and)’l(T), a, (T) are material moduli, usually referred to as normal
stress coefficients. The kinematic tenséys A, are defined by [2] through

A, =(gradv) +(grad v) )

A=< A+ A(gradv)+ (gradv) A, n=23 ®

Here—t denotes material time derivative awds the velocity vector. The above model contaissa a

special subclass, the classical linearly viscoudeh@he case when all the coefficients expgcire
set equal to zero). Flow of a thermodynamically patible fluid of third grade is given as:

v=u(y)i (4)

where idenotes the unit vector in the-coordinate direction, the direction that is choparallel the
external pressure gradients.

In the absence of body forces, the balance of limeanmentum
:uefv _ dV
- — P

= p— Equation of Motion 5
" v (Eq ) 5)

divr + pb -
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where K is the porous medium permeability

2
pd—?:r.L—divq+ﬂT<V +por +Q(T) (6)

d

Here € denotes the internal energl,is the velocity gradientr is the radiant energy, both per unit
mass aan(T) denotes the reacting term.

Governing Equations and M ethod of Solution

Following Tawaser et al [13], we consider the uadjetwo-dimensional boundary layer flow of a
magneto hydrodynamic (MHD) through a porous medidime basic governing equations are as
follows:

a_u+ﬂ:0 (7)
ox oy

ou Odu Ou_190
u—+v— Y7,
ot ox oy poy

3 3 3 2 2
(T)auj a{au_F 0°u , 0%, Qud’u ,du au}

i ips z U p ¥V gt F3 -
oy ) p | oty oxoy dy® ox oy dy oxay

2 2 42
ot o R P L P
p 0y 0xdy p\ody) oy p K

(8)

2 2 2 2 4
(O[T pfr) Q| gy 4O, U OM, OUOU, op MY s o{uB, -,
oy oy ooy oy oy

V__

oy\ oy oxdy oy oy
u? oT . oT . aT
+ —+0IT) = —+y—+Vv—
1 0l o T T

(9)

The appropriate initial and boundary condition asdollows
u(x0)=U,,v(x0)=V,,T(x0)=T, asy=0T - T,asy - (10)

where o"is the Stefan-Boltzmann constark,is the mean absorption coefficie@t, is the heat

Vv
release per units massy,, <0is the injection, V, >0is the suction, VW = —W,
-C
ax ax
U, =—F7——, T \Xt)=T, +T
" -ct) 1) “2v(1-
the universal gas constarél,-is the dimensionless temperatuke,is the permeability of the porous
mediaK is the thermal conductivity is the densityC,, is the specific heat at constant pressuris,

)2 ,a,b are constant& is the activating energiR is

2
the dynamic viscosity,u(%j is the viscous heating effect, directiag,is the Frank-Kamenetskii
r

parameter/} is the similarity variabley,, is the effective viscositye' is the thermal expansioi,
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is the fluid initial temperature or wall temperaull, is the reference temperaturk, is the absolute
temperature within the boundary laydr,, T,,.....T_ - Temperature at the platey, ,a, , 5, are the
fluid parametersy is the dimensionless velocity in thedirection, W is the stream functiory, is the

dimensionless velocity in thedirection , T, is the free stream temperature.

From Equations (8) and (9) we seek Reynolds madileoform

p(T) = pe™ (11)

Qu_du_du_19d( _y0u) a 0u 0°u  0°u 0 w?u 0 ud’u
+U—+v— L€ — [+— +Ub—+VV—+——+3————
.  ox 9y pay dy) ploby 00Xy 0y 90Xy 0Y&XY
a,0u 0°u __fi(0du 62u o
2—= 6

p 0y 00y’ ay W P

=(E,B,- Béu)wef
(12)

8 (aT), , suofdu * [ouod’u, dud*u. duwu
K—| — |+ 1,€ ta,| ———+ u— + vV— +
oy 6y oyooy o0yoXdy 0ydy

Zﬁg(%j +o(uB,-E)’ [ qyj +ﬂef—+QQ AeRT

(13)
We introduce the following variables and parameters

LIJ: UWVXf(ﬂ)’T:Too+(TW_T00)9(,7) and’7:y UW/va;u:(‘;_l:/J’V:_%_lj:i

EQGA e-%To 40T . _Yy ._uU T-T k

, = =N ——.,u :_’Hz—VW,Da:
R'|I)2+T0E R y

kK lo Uy T,-T Ulo*

w

(/j:

(14)

Substituting Equation (14) into Equations (12) éh8), we obtain

i(e-w tr)-s{f +1/27f T ag| 2887 - 1 ®) 3172 + s{z fm+ Ef7f ) +}
dn 2 (15)

+2a,f"? +6fRe f 21"+ m?(E, - f')—é:o

P%H’(H%F{,j{f@— e+ {/76’+419}}+ Bre™?( f)* +a, Ec
(16)
|:ff"2 2{ .I:"2+,7flfm}_ 'f'"}+2ﬂECf"4+sz¢ f— a +—+¢/ 8.+€9 :
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Where
_ EQGA % _ 40T} _ aa _ aa _ Ba’ e
- y - y - y - ) - ) S -
v (RT02+TOEie R = t-ct) 7 wla-ct)'” g -ct) a
17
The transformed boundary condition is as follows
f(0)=A f'(0)=1 f(o)=1 '(0)=0,6(0)=16(0)=0 (18)

We proceed to solve Equations (15) and (16) sulte€l8) numerically using Galerkin-Weighted
Residual Method as follows:

T4
Let f=iﬁie‘/ ,6’=il$e( jy (19)
i=0 i=0

The results are presented in Figures 1-5
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Figure 1: Graph of the velocity functioh for various values of
Br=05Pr=Re=A=S=4=10Ec=05a,=a,=m=E, =¢ =01
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Figure 2: Graph of the temperature functiéh for various values of
Br= 05Pr=Re=A=S=£4=10Ec=050,=a,=m=E, =¢ =01
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Figure 3: Graph of the velocity functiorf for various values of
Br= 05Pr=Re=A=S=£4=10Ec=050,=a,=m=E, =¢ =01
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Figure 4: Graph of the temperature functiéh for various values of
Br= 05Pr=Re=A=S=£4=10Ec=050,=a,=m=E, =¢ =01
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Figure5: Graph of the temperature functiéh for various values of
Br=05Pr=Re=A=S=4=10Ec=05a,=a,=m=E, =¢ =01

Discussion of Results/Conclusion

The study of third grade fluids is extremely impmit due to its wide variety of practical applicaso
in processes such as filtration of polymer solwgiand soil remediation through the removal of liqui
pollutants. From Figures 1-5 the results show that fluid velocity and temperature increases
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increase in each parameters. It is noticed fronurelgy 3 & 5 that the temperature profile reach the
maximum point as Darcy numbérank — Kamenetskiparameter increases. We observed from
Figure 4 that the velocity profile has a minimump@sFrank — Kamenetskparameter increases.

Conclusion

It is concluded that velocity fluid and the tempgara fluid decreases asrank — Kamenetskii
parameter and variable viscosity parameter inceeasdransient decrease in both the fluid velocity

and temperature is observed with increase in fach, & a';non-Newtonian parametersE,

Electric parameter Br Brinkman number and Darcy number which decreasesptrosity in the
system of flow.

For engineering purpose, the flow model of outbpem represents the oils well and as gherrank

— Kamenetskiparameter is increasing there is quick recoverpibfrom the oils’ well. Also, the
results of this problem are of great interest iodoiction processing, automobile engine, for thetgaf
of life and proper handling of the materials durprgcessing.
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