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ABSTRACT 

The integration of artificial intelligence (AI) into Maximum Power Point Tracking (MPPT) systems has emerged as a 

transformative solution for enhancing energy efficiency in perovskite-based flexible solar photovoltaic (PV) panels, 

particularly under partial shading conditions. This study explores the design, implementation, and evaluation of AI-

driven MPPT techniques tailored for dynamic urban environments. Fabricated using advanced perovskite materials 

and encapsulated for flexibility and durability, these panels exhibit high power conversion efficiency and adaptability 

to non-traditional surfaces. Comparative analyses reveal that AI-based MPPT outperforms conventional methods in 

tracking accuracy, response time, and energy yield. The findings underscore the scalability and robustness of AI-

driven systems, highlighting their potential for urban applications such as rooftop PV installations, solar-integrated 

windows, and portable solar devices. The study concludes that AI-enhanced MPPT systems significantly improve the 

viability of solar energy solutions in environments with non-uniform illumination, paving the way for sustainable 

urban energy infrastructures. 
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INTRODUCTION 
The increasing demand for sustainable and efficient 
energy solutions has elevated the role of solar 
photovoltaic (PV) technology, particularly in urban 
environments where space constraints necessitate 
innovative designs [1]. Flexible solar PV panels, 
especially those based on perovskite materials, have 
emerged as a promising solution due to their 
lightweight, adaptable form factors, and high-power 
conversion efficiency [2]. These panels can be 
seamlessly integrated into non-traditional surfaces 
such as building facades, rooftops, and even wearable 
devices, making them ideal for urban applications 
[3,4]. However, one of the primary challenges facing 
solar PV systems in urban settings is the prevalence 
of partial shading caused by obstacles such as 
buildings, trees, and other structures. Partial shading 
can significantly impact the energy harvesting 
efficiency of solar PV panels by creating non-uniform 

illumination, which leads to localized hotspots and 
reduces the overall power output. The effects of 
partial shading are especially pronounced in flexible 
PV systems, which are often installed in 
configurations that increase their exposure to shading 
[5]. Maximum Power Point Tracking (MPPT) 
algorithms are crucial for optimizing the energy 
output of solar PV systems under varying 
environmental conditions. Conventional MPPT 
techniques, such as Perturb and Observe (P&O) and 
Incremental Conductance (IC), perform well in 
uniform illumination scenarios. However, they often 
struggle with rapidly changing shading conditions, 
which are common in urban settings [5,6]. These 
traditional algorithms may fail to identify the global 
maximum power point (MPP) on the PV panel’s 
characteristic curve, instead converging on local 
maxima that limit energy efficiency [7,8]. Given the 
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dynamic nature of partial shading, there is a pressing 
need for more adaptive and intelligent MPPT 
solutions that can quickly and accurately track the 
global MPP to maximize energy harvesting [9,10]. 
Artificial intelligence (AI)-driven MPPT methods, 
leveraging machine learning and optimization 
algorithms, have shown promise in addressing these 
limitations by providing real-time adaptability and 
superior accuracy compared to conventional 
approaches [9,10]. This study aims to showcase the 
effectiveness of AI-driven MPPT techniques in 
optimizing energy yield from perovskite-based 

flexible solar photovoltaic (PV) panels under partial 
shading conditions. By harnessing advanced AI 
algorithms in combination with the unique properties 
of perovskite materials, the research focuses on 
enhancing the adaptability of MPPT systems to 
dynamic shading scenarios, thereby maximizing 
energy output in environments with non-uniform 
illumination. Furthermore, the study provides 
practical insights into the integration of AI-driven 
MPPT in urban energy systems, contributing to the 
broader adoption and efficiency of renewable energy 
technologies. 

                                                                    METHODOLOGY 
This study employs a narrative review methodology 
to evaluate the effectiveness of AI-driven MPPT 
systems for perovskite-based flexible solar PV panels 
under partial shading conditions. The methodology 
synthesizes information from scientific literature, 
experimental studies, and computational analyses, 
focusing on three key areas: Material Science: The 
fabrication process of perovskite PV panels, including 
material selection, deposition techniques, and 
performance metrics. AI Algorithms: The 
implementation of neural networks, convolutional 
neural networks (CNNs), and reinforcement learning 

for real-time MPPT optimization under diverse 
shading patterns. Performance Metrics: Evaluation of 
energy yield, tracking efficiency, and adaptability of 
AI-driven MPPT systems in dynamic environments, 
informed by controlled experiments and real-world 
data. 

Material Preparation Procedures 
These are the procedures to follow when preparing 
your materials for effective Maximum Power Point 
(MPP) tracking techniques. 

Fabrication of Perovskite-Based Flexible PV Panels 
The fabrication of perovskite-based flexible PV panels 
involves the utilization of organic-inorganic hybrid 
perovskite materials due to their excellent 
optoelectronic properties and mechanical flexibility 
[11]. The process begins with the synthesis of the 
perovskite material, typically a combination of lead 
halide and organic cations, followed by deposition 
techniques such as spin-coating, blade-coating, or 
inkjet printing onto a flexible substrate like 

polyethene terephthalate (PET) or polyethene 
naphthalate (PEN). Subsequent annealing processes 
ensure crystallinity and uniformity [12,13]. To 
enhance flexibility and durability, encapsulation 
layers are applied to protect against environmental 
factors, with metrics such as bending radius and 
mechanical fatigue tests used to evaluate flexibility 
and resilience. 

Design of AI-Driven MPPT System 
The AI-driven MPPT system is designed to optimize 
energy extraction under varying illumination 
conditions, leveraging advanced machine learning 
techniques. The core algorithm employs models such 
as neural networks, CNNs, or reinforcement learning, 
trained to identify and adapt to the maximum power 
point under partial shading scenarios [14,15]. A 
training dataset is generated through a combination 
of simulation and experimental data, covering diverse 

shading patterns, incident angles, and irradiance 
levels. This dataset enables the AI model to learn the 
relationship between shading patterns and optimal 
operating points [16-25]. Real-time implementation 
integrates sensors for voltage and current 
measurements, with the AI model continuously 
updating control signals to optimize energy output 
[16]. 

Experimental Setup 
The experimental setup involves testing the 
performance of the fabricated PV panels and the AI-
driven MPPT system under both controlled and real-
world conditions. Controlled tests are conducted 
using programmable light sources to simulate partial 
shading patterns, while real-world experiments are 
carried out in outdoor environments with natural 
shading variations [19-26]. Key performance metrics 
include: Energy Yield: Total energy harvested over a 

defined period, compared to theoretical maximums. 
Tracking Efficiency: Ratio of the power tracked by 
the MPPT system to the actual maximum power 
available. Response Time: Time taken by the MPPT 
system to converge to the maximum power point 
after a change in shading conditions. High-resolution 
data acquisition systems record electrical parameters 
and environmental conditions, ensuring 
comprehensive analysis. The results provide insights 
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into the efficacy and practicality of integrating AI-
driven MPPT techniques with perovskite-based 

flexible PV panels in dynamic environments 
[17,18,20]. 

Performance Comparison 
AI-driven Maximum Power Point Tracking methods 
demonstrate a significant improvement over 
conventional techniques, such as Perturb and 
Observe (P&O) and Incremental Conductance (IC), 
under identical operating conditions [27,8]]. A 
comparative analysis reveals that: 
Efficiency: AI algorithms, particularly those utilizing 
machine learning models like neural networks and 
reinforcement learning, achieve higher efficiency in 
identifying the Maximum Power Point. In controlled 
experiments, AI-driven MPPT exhibited a 15-25% 
increase in energy output compared to P&O and IC 
methods during rapid irradiance changes [29,5]. 

Response Time: AI-driven systems adapt to 
variations in solar irradiance and temperature 
approximately 40% faster than traditional MPPT 
approaches. This speed is critical for maintaining 
optimal energy harvesting, especially in dynamic 
weather conditions [30,6] 
Accuracy: AI techniques achieve near-optimal 
tracking precision, maintaining the operating point 
closer to the true MPP under fluctuating conditions. 
This minimizes energy losses caused by oscillations 
around the MPP [31,15]. 
 

                                                                                 Adaptability 
AI-driven MPPT methods excel in adapting to 
complex and dynamic shading patterns, a common 
challenge in real-world solar PV installations. Key 
findings include: 
Predictive Capabilities: Machine learning models, 
trained on historical irradiance and shading data, 
predict shading events and adjust the operating point 
preemptively. This leads to sustained energy 
extraction even under partial shading conditions 
[16]. 

Robustness: AI-based systems dynamically adjust to 
non-uniform irradiance distributions caused by 
shading from buildings, trees, or clouds. Unlike 
conventional methods, which struggle under such 
conditions, AI-driven MPPT maintains a stable 
performance, extracting 10-18% more energy from 
shaded modules [15]. 
Scalability: These methods are scalable to larger 
systems with multiple interconnected PV arrays, 
further enhancing their adaptability to varied shading 
scenarios [17]. 

Implications for Urban Applications 
The superior performance and adaptability of AI-
driven MPPT present transformative opportunities 
for urban solar energy systems. The implications are 
as follows: Rooftop PV Systems: AI-powered MPPT 
enhances the energy output of rooftop installations by 
optimizing energy capture under partial shading and 
varying sunlight angles caused by nearby structures. 
This translates to maximized energy efficiency and 
improved return on investment for urban settings 
with limited rooftop space [31-35]. Solar-Integrated 
Windows: The ability of AI systems to operate 
efficiently under low-light and dynamic shading 
conditions makes them ideal for solar-integrated 
windows. These technologies rely on capturing 

diffuse sunlight, where AI-driven optimization 
ensures sustained performance [36-41]. Portable 
Solar Applications: For portable solar devices often 
exposed to inconsistent sunlight, AI-driven MPPT 
provides robust tracking, ensuring reliable energy 
supply for applications such as outdoor activities, 
emergency response, and portable electronics [42-
51]. The integration of AI into MPPT systems not 
only enhances energy efficiency but also broadens the 
applicability of solar PV technology to complex and 
dynamic environments [52-59]. These advancements 
pave the way for more resilient and versatile urban 
solar energy solutions. 

Findings of the Study 
Performance Improvement: AI-driven MPPT 
systems achieve a 15-25% increase in energy yield and 
a 40% faster response time compared to conventional 
methods like Perturb and Observe (P&O) and 
Incremental Conductance (IC). Adaptability: These 
systems demonstrate robust performance under 
complex shading patterns, maintaining 10-18% 

higher energy output in partially shaded scenarios. 
Predictive models further enhance energy capture by 
preemptively adjusting to shading variations. Urban 
Applications: AI-driven MPPT systems optimize 
energy capture for rooftop PV installations, solar-
integrated windows, and portable devices, ensuring 
efficiency in limited space and low-light conditions.

                                                                                    CONCLUSION 
The integration of AI into MPPT systems for 
perovskite-based flexible solar PV panels addresses 
the critical challenge of partial shading, enhancing 

energy efficiency and adaptability in dynamic urban 
environments. AI-driven solutions not only 
outperform conventional MPPT methods but also 
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broaden the applicability of solar technologies to 
varied contexts, including building facades, wearable 
devices, and portable applications. These 
advancements represent a significant step toward 
sustainable and resilient urban energy systems, 

aligning with global goals for renewable energy 
adoption. Further research is recommended to refine 
AI models and expand their scalability across diverse 
PV technologies and environmental conditions. 
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