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Abstract 
In this paper, a deterministic mathematical model for Chikungunya virus 
(Chikv) transmission and control is developed and analyzed to underscore 
the effect of vaccinating a proportion of the susceptible human, and vertical 
transmission in mosquito population. The disease free, and endemic equili-
brium states were obtained and the conditions for the local and global stabili-
ty or otherwise were given. Sensitivity analysis of the effective reproductive 
number, cR  (the number of secondary infections resulting from the intro-
duction of a single infected individual into a population where a proportion is 
fairly protected) shows that the recruitment rate of susceptible mosquito 
( MΛ ) and the proportion of infectious new births from infected mosquito 
( β ) are the most sensitive parameters. Bifurcation analysis of the model us-
ing center manifold theory reveals that the model undergoes backward bifur-
cation (coexistence of disease free and endemic equilibrium when 1CR < ). 
Numerical simulation of the model shows that vaccination of susceptible 
human population with imperfect vaccine will have a positive impact and that 
vertical transmission in mosquito population has a negligible effect. To the 
best of our knowledge, our model is the first to incorporate vaccinated human 
compartment and vertical transmission in (Chikv) model. 
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1. Introduction 

Chikungunya is a mosquito-borne viral disease that was first observed in Tanza-
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nia in 1952 [1]. In 1964, there was epidemic of Chikungunya in Vellore, Calcutta 
and Maharashtra state/provinces of India [2]. Ibadan, South Western Nigeria 
witnessed an epidemic of Chikungunya virus in 1969 when the virus was isolated 
from 49 patients [3]. The disease has been identified in over 60 countries in Asia, 
Africa, Europe and America, and the name describes the stooping appearance 
of the sufferers [4]. It is an RNA virus that belongs to the alphavirus genus and 
the family [5]. The symptoms include abrupt onset of fever accompanied by 
joint pain, muscle pain headache, nausea and rash [6]. Occasionally the infection 
may go unrecognized or be misdiagnosed and could be acute, sub-acute and 
chronic.  

In recent years, the virus has risen from relatively obscurity to become a glob-
al public health menace affecting millions of persons throughout the tropical and 
subtropical regions of the world and as such has also become a frequent cause of 
travel associated febrile illness [7]. The virus is transmitted through the bite of 
female Aedes aegypti and Aedes albopictus mosquitoes. Aedes aegypti breeds in 
the ubiquitous small pools of water found around human habitation [8]. Unlike 
Aedes aegypti which exists in tropical and subtropical area, Aedes albopictus can 
also thrive in temperate regions, thus potentially introducing Chikungunya to 
new ecological niche [9]. These species of mosquitoes are found biting through-
out the daylight hours. Mother to child transmission of Chikungunya virus has 
been reported [10]. 

Diagnosis is by confirming the presence of anti-Chikungunya antibody in the 
patient. At the moment, there is no vaccine or treatment for the disease. Protec-
tion is by covering of exposed skin with long pants and long sleeved shirts, insect 
repellents and insecticide treated mosquito nets. Since the beginning of the 19th 
century, mathematical model has become a veritable tool in the study of vec-
tor-borne diseases [11] [12] [13]. For (Chikv), we cite the following work, Du-
mont and Domerg [14], propose a model, including human and mosquito com-
partments that are associated with the time course of the first epidemic of Chi-
kungunya in Reunion Island. Using entomological results, they investigated the 
links between the episode of 2005 and the outbreak of 2006. Moulay, Azziz and 
Cadivel [15], developed a Chikungunya transmission model for the spread of the 
epidemic in both humans and mosquitoes, the model involves a temporal dy-
namics of vector (Aedes albopictus), depending on climatic factors. In the study, 
they provided estimates of the transmission potential of the virus and assessed 
the efficacy of the measures undertaken by public health authorities to control 
the epidemic spread in Italy. Ruiz et al. [16], analyzed the potential risk of Chi-
kungunya introduction into the US, their study combines a climate-based mos-
quito population dynamics stochastic model with an epidemiological model to 
identify temporal windows that have epidemic risk.  

Pongsumpun and Sangsawang [17], model studied theoretically an age-structured 
model for Chikungunya involving juvenile and adult human populations, giving 
conditions for the disease-free and endemic states respectively. They also sug-
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gested alternative way for controlling the 8disease. Yakob and Clements [18], 
analysed a simple, deterministic mathematical model for the transmission of the 
virus between humans and mosquitoes. They fitted the model to the large Reu-
nion epidemic data and estimated the type reproduction number for Chikun-
gunya, their model provided a close approximation of both the peak incidence of 
the outbreak and the final epidemic size. 

In this work, we proposed a deterministic mathematical model for the spread, 
and control of Chikv. Our model attempt to bridge identified gaps in the works 
cited above. Specifically, our model incorporated an imperfect vaccinated hu-
man compartment and vertical transmission in the mosquito population. 

2. Model Formulation 

The chic model is represented by nine non-linear ordinary differential equation 
consisting of human-sub population and mosquito sub-population. The human 
sub-population is divided into; susceptible human HS , vaccinated human HV , 
exposed human HE , infected symptomatic human 1I , infected asymptomatic 
human 2I , recovered Human R, such that the total human population, 

1 2H H H HN S V E I I R= + + + + + . While the mosquito sub-population is divided 
into; susceptible mosquito MS , exposed mosquito ME , and infected mosquito 

3I , such that the total mosquito population, 3M M MN S E I= + + . 
The parameters of the model and their values are given in Table 1, while Fig-

ure 1 is the schematic diagram of the transmission dynamics. 
The susceptible human sub-population is generated at a constant rate HΛ , 

which includes birth and immigration. The vaccinated population is generated 
as members of the susceptible population receive vaccination at the rate ν , a 
proportion of the vaccinated with time lose their immunity at the rate ψ  as 
their vaccine wanes and move back to the susceptible population. Member of the  

susceptible and vaccinated populations acquire infection at the rate 1 m M

H

b I
N

α
 

and 
( )1 1m M

H

b I
N

α ε−
 respectively and move to the exposed population, where  

1α  is the probability of infection, mb  biting rate of mosquito and ε  (where
0 1ε< < ) is the efficacy of the imperfect vaccine. Members of the exposed pop-
ulation move to either symptomatic infectious population at the rate 1σ  or to 
asymptomatic infectious population at the rate ( )11 σ− . The recovered popula-
tion is generated as both symptomatic and asymptomatic infected populations 
recover with lifelong immunity at the rate γ . All human population are de-
creased by natural death at the rate 1µ , except the two infected populations that 
are decreased by disease induced death at the rate δ .  

The susceptible mosquito population is generated by MΛ , this population is 
decreased by birth from infected mosquito (vertical transmission) at the rate 

MβΛ ; and as its members take a blood meal from either symptomatic or 
asymptomatic infected human (horizontal transmission) at the rate 2α . The 
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exposed mosquito population progresses to infected mosquito population at the 
rate 2σ . It is assumed that births from infected mosquito do not pass through the 
exposed class. All sub-populations of mosquito die naturally at the rate 2µ . 
 
Table 1. Parameters of the model Equations (1) to (9). 

Parameters Meaning Value Reference 

HΛ  Recruitment rate of susceptible human 0.073 [19] 

1α  Contact rate of susceptible human when bitten by 
Aides Mosquitoes 

0.24 [19] 

1µ  Natural death of human 0.000039 [20] 

1σ  Progression rate of exposed human to  
Symptomatic and Asymptomatic 

0.33 [21] 

1δ  Death rate of human due to virus infection 0.02 Assumed 

γ  Recovery rate of infectious human 0.68 [15] 

MΛ  Birth rate of Susceptible Aides Mosquitoes 83.75 [20] [22] 

β  Proportion of infectious new birth from  
infected Aides Mosquitoes 

0.00005 Assumed 

2α  The rate at which susceptible Aides become infectious 0.24 [19] 

2σ  Progression rate of exposed Aedes 0.285 Assumed 

2µ  Natural death rate of Aides 0.0714 [21] [23] 

ν  The rate at which susceptible human receive vaccine Variable  

ψ  The rate at which vaccine wane Variable  

ε  Vaccine efficacy where 0 1ε< <  Variable  

mb  Biting rate of mosquito 0.25 [19] [24] 

 

 
Figure 1. Schematic diagram of Chikungunya virus transmission dy-
namics, Equations (1) to (9).  
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2.1. The Model Equation  

From the model formulation, and schematic diagram Figure 1, we hereby 
present the model equations. 

( )1
1

d
d

H M H M
H H H

H

S b S IV S
t N

α
ψ ν µ= Λ + − − + ,             (1) 

( ) ( )1
1

1d
d

M H MH
H H

H

b V IV S V
t N

α ε
ν ψ µ

−
= − − + ,            (2) 

( )( ) ( )1
1 1

d
1

d
H M M

H H H
H

E b I S V E
t N

α
ε σ µ= + − − + ,            (3) 

( )1
1 1 1

d
d H
I E I
t

σ γ µ δ= − + + ,                  (4) 

( ) ( )2
1 1 21 H

dI E I
dt

σ γ µ δ= − − + +                  (5) 

1 2 1
d
d
R I I R
t

γ γ µ= + − ,                    (6) 

( )2 1 2
2

d
d

M MM
M M M M

H

b S I IS I S
t N

α
β µ

+
= Λ − − Λ − ,            (7) 

( ) ( )2 1 2
2 2

d
d

M MM
M M M

H

S b I IE I E
t N

α
β σ µ

+
= + Λ − + ,            (8) 

2 2
d
d

M
M M

I E I
t

σ µ= − .                     (9) 

Adding (1) to (6) gives  

( )1 2 1
d

d
H

H H
N I I N

t
δ µ= Λ − + − .                (10) 

Also adding (7) to (9), gives  

2
d

d
M

M M
N N

t
µ= Λ − .                    (11) 

where  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2H H H HN t S t V t E t I t I t R t= + + + + + ,     (12) 

( ) ( ) ( ) ( )M M M MN t S t E t I t= + + .             (13) 

(12) and (13) are the total human population and Aides mosquito population 
respectively.  

2.2. Basic Properties 

For the Chikungunya model (1) to (9) to be epidemiological meaningful, it is 
necessary to prove that all its state variables are non-negative for all time. This 
means that the solution of the model Equations (1) to (9) with non-negative ini-
tial data will remain non-negative for all time 0t > . 

Lemma 1. 
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The closed set  

( ) 9
1 2

1 2
1 2

, , , , , , , , :

, , , , , , , ;

H H H M M M

H M
H H H M M M

S V E I I R S E I
D

S V E I I R S E I
µ µ

+ ∈ℜ
 = Λ Λ 

≤ ≤ 
 

；
.      (14) 

is positively-invariant and attracting with respect to the basic model Equations 
(1) to (9). 

Proof 
From Equations (10) and (11); 

1
d

d
H

H H
N N

t
µ≤ Λ − , 2

d
d

M
A M

N N
t

µ≤ Λ − .
 

It follows that 
d

0
d

HN
t

<  and 
d

0
d

MN
t

<  if ( )
1

H
HN t

µ
Λ

>  and ( )
2

M
AN t

µ
Λ

>  

respectively. Thus a standard comparison theorem as in Lakshmikantham and 
Martynyuk, [25] can be used to show that  

( ) ( ) ( ) ( )( )1 1

1

0 e 1 et tM
H HN t N µ µ

µ
− −Λ

≤ + −  and  

( ) ( ) ( ) ( )( )2 2

2

0 e 1 et tM
M MN t N µ µ

µ
− −Λ

≤ + − . In particular ( )
1

H
HN t

µ
Λ

≤  and  

( )
2

M
MN t

µ
Λ

≤  if ( )
1

0 H
HN

µ
Λ

≤  and ( )
2

0 M
AN

µ
Λ

≤  respectively. Thus D is posi-

tively-invariant. Further, if ( )
1

0 H
HN

µ
Λ

> , and ( )
2

0 M
MN

µ
Λ

> , then either the 

solution enters D in finite time or ( )HN t  approaches 
1

H

µ
Λ

, and ( )MN t  ap-

proaches 
2

M

µ
Λ

, and the infected variables 1 2 3, , , ,H AE I I E I  approaches 0.  

Hence D is attracting, that is all solutions in 9
+ℜ  eventually enters D. Thus in D, 

the basic model Equations (1) to (9) is well posed epidemiologically and mathe-
matically according to [26]. Hence it is sufficient to study the dynamics of the 
basic model Equations (1) to (9). 

Lemma 2. Let the initial data ( )0 0F ≥ ,  
where  

( ) ( )1 2, , , , , , , ,H H H M M MF t S V E I I R S E I= .  

Then the solution ( )F t  of the Chikungunya virus model (1) to (9) are 
non-negative for all 0t ≥ . Furthermore form (10) and (11), 

( )
1

limsup H
Ht

N t
µ δ→∞

Λ
=

+
 and ( )

2

limsup M
Mt

N t
µ→∞

Λ
= . 

Proof  

( ) [ ]{ }1 sup 0 : 0 0,t t F t t= > > ∈ . Thus 1 0t > . It follows from (1) that  
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( ) ( ) ( )

( ) ( ) ( )

1

1

1 1
0

1 1
0

d exp d
d

exp d ,

t
M

H m
H

t
M

H H M
H

IS t b t
t N

IV b t
N

α ξ ξ ν µ

ψ α ξ ξ ν µ

   + +  
    

 
= Λ + + + 

  

∫

∫
         (15) 

So that,  

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

1 1 1 1
0

1 1
0 0

d exp d 0
d

exp d d

t
M

H m H
H

t P
M

H H m
H

IS t b t S
t N

IV b p p
N

α ξ ξ ν µ

ψ α ξ ξ ν µ

 
+ + − 

  
 

= Λ + + + 
 

∫

∫ ∫
        (16) 

Hence, 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1

1

1

1 1 1 1
0

1 1 1
0

1 1
0 0

0 exp d

exp d

exp d d 0.

t
M

H H m
H

t
M

m
H

t P
M

H H M
H

IS t S b t
N

Ib t
N

IV b p p
N

α ξ ξ ν µ

α ξ ξ ν µ

ψ α ξ ξ ν µ

 
= − + + 

  
 

+ − + + 
  

 
Λ + + + > 

 

∫

∫

∫ ∫

    (17) 

Similarly, it can be shown that 0F > , for all 0t > .  
For the second part of the proof, note that, 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

0 ,0 ,0 ,

0 ,0 ,0 ,

0 ,0

H H H H H

H H M M

M M M M

V t N t E t N t I t N t

I t N t R t N t S t N t

E t N t I t N t

< ≤ < ≤ < ≤

< ≤ < ≤ < ≤

< ≤ < ≤

 

From Equations (10) and (11),  

( ) ( )
1 1

liminf limsup ,H H
H Ht t

N t N t
µ δ µ δ→∞ →∞

Λ Λ
≤ ≤ =

+ +
            (18) 

and  

( ) ( )
2 2

liminf limsupM M
M Mt t

N t N t
µ µ→∞ →∞

Λ Λ
≤ ≤ = .            (19) 

as required.  

3. Results 
3.1. Local Stability of Disease Free Equilibrium (DFE) 

The basic model (1) to (9) has a DFE, 0E  obtained by setting the right-hand 
sides of the model equations to zero, which gives: 

( )
( )

( ) ( )

* * * * * * * * *
0 1 2

1

1 1 1 1 2

, , , , , , ,

, ,0,0,0,0, ,0,0

H H H M M M

H H M

E S V E I I S E I

ψ µ ν
ψ µ ν µ ψ µ ν µ µ

=

 Λ + Λ Λ
=   + + + + 

      (20) 

The linear stability of 0E  can be established using the next generation Matrix 
operator method on the system (I) to (9). Using the notation in [23], the matric-
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es F and V, for the new infection terms and the remaining transfer terms, are, 
respectively, given by, 

( )* *
1

*

* *
2 2

* *

1
0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

m H H

H

m M m M

H H

b S V

N

F

b S b S
N N

α ε

α α

  + −  
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
 

,      (21) 

and, 

( )

3

1 4

1 4

5

2 6

0 0 0 0
0 0 0

1 0 0 0
0 0 0 0
0 0 0

K
K

V K
K

K

σ
σ

σ

 
 − 
 = − −
 
 
 − 

.             (22)

 

where, 

1 1 1 2 1 3 1

4 1 5 2 2 6 1

, , ,
, , M

K K K
K K K

ν µ ψ µ σ µ
γ µ δ σ µ µ β

= + = + = +

= + + = + = − Λ
            (23) 

1 2 3

4

1
2c

M M M
R

M

 + +
=   

 
,                 (24) 

*
1 3 4 5M HM K K K Nβ= Λ ,                   (25) 

*
2 3 4 5M HM K K K Nβ= Λ ,                   (26) 

( )( )* * *
3 3 4 5 6 2 2 14 1m M m H HM K K K K b S b S Nα σ α ε= + − ,        (27) 

*
4 3 4 5 6 HM K K K K Nβ= .                   (28) 

Hence using theorem 2 of [23] the following results are established. 
Theorem 1 The disease free equilibrium, 0E  of the model (2.1) to (2.9) is 

locally asymptotically stable (LAS) if 1cR < , and unstable if 1cR > . 

3.2. Global Stability of Disease Free Equilibrium 

Consider the feasible region:  

{ }* * * *
1 1 : , , , ,H H H H M MD X D S S V V R R S S= ∈ ≤ ≤ ≤ ≤        (29) 

{ }1 2, , , , , , , , .H H H M M MX S V E I I R S E I=             (30) 

Lemma 3. The region 1D  is positively invariant for the Chikungunya model 
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Equations (1) to (9). 
Proof 
From Equations (1) to (9) and (20), 

we have that, the only non-zero compartments at disease free equilibrium are; 

( )

( ) ( )

( )

1
1

1
1

2 1 2
2

,

1
,

H M H M
H H

H

M H MH
H H

H

M MM
M M M M

H

dS b S IV S
dt N

b V IdV S V
dt N

b S I IdS I S
dt N

α
ψ ν µ

α ε
ν ψ µ

α
β µ

= Λ + − − +

−
= − − +

+
= Λ − − Λ −

         (31) 

Such that, 

( )

( )

( ) ( )
( ) ( )

( )( )

1
1

1

1
1

1 1 1 1

* *
1

d
,

d
m H MH

H H H
H

H H H

H H
H

H H H

b S IS V S
t N

V S

S

S V S

α
ψ ν µ

ψ ν µ

ψ µ ν
ν µ ψ

ψ µ ν µ ψ µ ν µ

ν µ ψ

= Λ + − − +

≤ Λ + − +

 Λ + Λ
≤ + + − 

+ + + +  

= + + −

,     (32) 

Hence,  

( ) ( ) ( )1* * * * 0 e .t
H H H H H HS t S V S V S ν µψ ψ − + ≤ + − − −           (33) 

Thus if *

1

H
HN

µ
Λ

=  and ( ) * *0H H HS S Vψ≤ +  for all 0t ≥ , then 

( ) * *
H H HS t S Vψ≤ +  for all 0t ≥ . 
Similarly, it follows from Equation (7) of our model and (20) where 

*

2

M
MS

µ
Λ

= . 

We have that,  

( )

( )

2 1 2
2

*
2 2 2

2

d
d

M MM
M M M M

H

M
M M M M M

b S I IS I S
t N

S S S S

α
β µ

µ µ µ
µ

+
= Λ − − Λ −

 Λ
≤ Λ − ≤ − = − 

 

.       (34) 

Hence,  

( ) ( ) 2* * 0 e t
M M M MS t S S S µ− ≤ − −  .             (35) 

Thus if *

2

M
MN

µ
Λ

=  and ( ) *0M MS S≤  for all 0t ≥ , then ( ) *
M MS t S≤  for 

all 0t ≥ . 
In summary, we have shown that 1D  is positively invariant and attracting 

with respect to the solutions of our model Equations (1) to (9). 
Theorem 2 
The DFE of the basic model (1) to (9) is Global Asymptotical Stability (GAS) 

in 1D , whenever 1CR ≤ .  
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Proof 
To prove the GAS of the DFE we adopt the approach in [27]. 
Let ( ), , ,H H MX S V R S=  and ( )1 2, , , ,H M MZ E I I E I=  and group our model 

Equations (1) to (8) into: 

( )

( )

d ,0 ,
d
d , .
d

X F X
t
Z G X Z
t

=

=
                        (36) 

where ( ),0F X  is the right hand side of , , ,H H MS V R S    with  

1 2 0H M ME I I E I= = = = =  and ( ),G X Z , the right hand side of 

1 2, , , ,H M ME I I E I     . Next we consider the reduced system:  

( )d ,0
d
X F X
t
=  given as, 

( )

1

1

1

2

d
,

d
d

,
d

d ,
d
d

.
d

H
H H

H
H H

M
M M

S S
t

V S V
t

R R
t
S S
t

µ

ν ψ µ

µ

µ

= Λ −

= − +

= −

= Λ −

                  (37) 

Let ( ) ( )
( ) ( )

1* * * * *

1 1 1 1 2

, , , , ,0,H H M
H H MX S V R S

ψ µ ν
ψ µ ν µ ψ µ ν µ µ

 Λ + Λ Λ
= =   + + + + 

     (38) 

be an equilibrium of (37) we show that *X  is a global stable equilibrium in 

1D . 
To do this, we solve the Equations (37), which gives 

( ) ( )
( )

( )
( )

( )( )

( ) ( )( )

( ) ( )
( )

1 1

1 1

1 1* *

1 1 1 1

1 *

1 1

e

0 e ,

,

tH H
H H H

t
H

H
H H

S t V V

S

S t V

ψ µ ν µ

ψ µ ν µ

ψ µ ψ µ
ψ ψ

ψ µ ν µ ψ µ ν µ

ψ µ
ψ

ψ µ ν µ

− + +

+ +

   Λ + Λ +
= + − +      + + + +   

+

Λ +
→ +

+ +

 (39) 

as t →∞ . 

( ) ( ) ( )
( )( ) ( ) ( )( )

( ) ( )

1 1 1 1

1 1 1 1

1 1

e 0 e ,

,

t tH H
H H

H
H

V t V

V t

ψ µ ν µ ψ µ ν µν ν
ψ µ ν µ ψ µ ν µ

ν
ψ µ ν µ

− + + + +Λ Λ
= − +

+ + + +

Λ
→

+ +

(40) 

as t →∞ . 

( ) ( ) ( )10 e , 0tR t R R tµ−= → ,                  (41) 

as t →∞ . 

( ) ( ) ( )2 2

2 2 2

e 0 e ,t tM M M
M M MS t S S tµ µ

µ µ µ
− −Λ Λ Λ

= − + → ,       (42) 
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as t →∞ . 
This asymptotic dynamics is independent of initial conditions in D. Hence the 

solution of xxx converges globally in 1D . 
Next we are required to show that ( ),G X Z  satisfies the following two con-

ditions in [19] pp246 namely; 

( )
( ) ( ) ( ) ( )*

,0 0,
ˆ ˆ ˆ, ,0 , , , 0,Z

G X

G X Z D G X Z G X Z G X Z

=

= − ≥
         (43) 

where,  

( ) ( )
( ) ( )

1*

1 1 1 1 2

,0 , ,0,H H MX
ψ µ ν

ψ µ ν µ ψ µ ν µ µ
 Λ + Λ Λ

=   + + + + 
.          (44) 

and ( )* ,0ZD G X  is the Jacobian of ( ),G X Z  taken with respect to 

( )1 2, , , ,H M ME I I E I  and evaluated at ( )* ,0X , which is an M-Matrix (the off 

diagonal elements are non-negative). 
Thus,  

( )

3 1

1 4

1 4*
* *

2 2
5* *

2 6

0 0 0
0 0 0

1 0 0 0
,0

0 0

0 0 0

Z
m M m M

H H

k Q
k

k
D G X

b S b S
k

N N
k

σ
σ

α α

σ

− 
 − 
 − −

=  
 − 
  − 

,     (45) 

( )

2

* *

2 3 2 3* *

0 0 0 0
0 0 0 0 0
0 0 0 0 0

ˆ ,
0 0 0

10 0 0 0

M

H H
M M

M M

M

Q I

G X Z N Nb Q b Q
S S

α α

β

 
 
 
 
 

=  
 
 
 
 Λ 

,     (46) 

where, 

( )

( ) ( )
( )

* *
1

1 *

* *

2 * * * *

*

3 1*

*

4 2*

1
,

1
1 ,

1 1

1 ,

1 .

m H H

H

H HH H

HH H H H

H M

HM

H M

HM

b S V
Q

N

S VN NQ
NS V S V

N SQ I
NS

N SQ I
NS

α ε

ε
ε ε

+ − +
=

 + −
= −  + − + + − + 
 

= − 
 
 

= − 
 

   (47) 

Further *
H HS S≤ , *

H HV V≤  and *
M MS S≤  in 1D . Thus, it follows that 
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*1 0H

H

S
S

 
− > 

 
, 

*1 0H

H

V
V

 
− > 

 
 and

*1 0M

M

S
S

 
− > 

 
. Hence ( )ˆ , 0G X Z ≥ . 

Therefore, by the theorem 2 in [28], the disease-free equilibrium is globally 
asymptotically stable since in the absence of disease induced mortality the hu-
man population is constant. 

3.3. Sensitivity Analysis 

Here we present the sensitivity index of the parameters of the effective reproduc-
tive number ( )CR . Sensitivity tells us how important each parameter is to dis-
ease transmission. Such information, is crucial not only to experimental design, 
but also to data assimilation and reduction of complex nonlinear model [29]. 
Sensitivity Analysis is commonly used to determine the robustness of model 
prediction to parameter values, since there are usually errors in data collection 
and presumed parameter values. It is used to determine parameters that have 
high impact on the ( )CR  and should be targeted by intervention strategies. 
Sensitivity indexes allows us to measure the relative changes in a variable when a 
parameter changes. The normalized forward sensitivity index of a variable with 
respect to a parameter is the ratio of relative changes in the parameter when the 
variable is a differentiable function of the parameter. The sensitivity index may 
be alternatively defined using partial derivatives. The sensitivity index of our 
model is given in Table 2. 
 
Table 2. Sensitivity analysis index for the effective basic reproductive number. 

Parameter Sensitivity index 

1α  0.06 

2α  0.37 

1µ  0.63 

2µ  0.87 

1σ  0.02 

2σ  0.87 

β  1.25 

ψ  −0.12 

ε  −0.86 

δ  0.13 

γ  0.5 

HΛ  0.62 

MΛ  1.6 

ν  0.46 
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From Table 2, the most sensitive parameter of CR  is the recruitment rate of 
susceptible mosquito ( MΛ ) followed by the proportion of infectious new birth 
from infected mosquito ( β ) while the natural birth rate of mosquito ( 2µ ) and 
the rate at which exposed mosquito become infectious ( 2σ ) are equally sensitive 
to the CR  according to the model. This means that any policy or practice capa-
ble of reducing these parameters will go a long way in reducing the menace of 
Chikungunya and at the long run, result to eradication. 

Endemic Equilibrium 

Let ( )** ** ** ** ** ** ** ** ** **
1 1 2, , , , , , , , ,H H H M M ME S V E R I I R S E I= ,           (48) 

represents any arbitrary endemic equilibrium of the model (1) to (9). Further, let  

( )** ****
2 1 2** **1

** **, .Mm M
H M

H H

b I Ib I
N N

αα
λ λ

+
= =                (49) 

be the forces of infection of humans and vectors at steady state, respectively. 
Solving (1) to (9) in terms of **

Hλ  and **
Mλ , we have; 

( )
( )( ) ( )( )

( ) ( )
( )( )( )

( ) ( )( )
( )( )( )

( ) ( ) ( )( )
( )( )( )

**
2** **

** ** ** **
2 1 2 1

** **** **
1 22** **

1** ** ** **
2 1 3 2 1 3 4

** **
1 2** **

2 ** **
2 1 3 4

, ,

11
, ,

1 1
,

H H H
H H

H H H H

H H HH H H
H

H H H H

H H H

H H

k
S V

k k k k

kk
E I

k k k k k k k

k
I R

k k k k

λ ν
λ λ ψν λ λ ψν

σ λ λ ε νλ λ ε

λ λ ψν λ λ ψν

σ λ λ ε ν

λ λ ψν

Λ + Λ
= =

+ + + + + +

Λ + + −Λ + + −
= =

+ + − + + −

− Λ + + −
= =

+ + −

( ) ( )( )
( )( )( )

( ) ( )

( )

** **
2

** **
2 1 3 4 1

**
** **5 6 6

** **
5 6 2 2 5 6 5 6 2 2 5 6

**
** 2

**
5 6 2 2 5 6

1
,

, ,

.

H H H

H H

M M M
M M

M M M M

M M
M

M M

k

k k k k

k k k
S E

k k k k k k k k

I
k k k k

γ λ λ ε ν

λ λ ψν µ

λ
λ β σ µ λ β σ µ

σ λ
λ β σ µ

Λ + + −

+ + −

Λ Λ
= =

+ Λ + + Λ +

Λ
=

+ Λ +

(50) 

Substituting (20) into (19) we have; 

( ) ( )( )
( )( )( )
( ) ( ) ( ) ( )

** **
2 2**

** **
2 1 3 4

4 3 2** ** ** ** **

1
,

.

m M H H
M

H H

H H H H H

b k

k k k k

A B C D E

α λ λ ε ν
λ

λ λ ψν

λ λ λ λ λ

Λ + + −
=

+ + −

= + + + −

            (51) 

where,  

( )( )2 5 6 2 1 4 1m H MA b k k kα β σ µ µ γ= Λ + Λ + + ,            (52) 

( ) ( )( ) ( )( )2
2 5 6 2 3 4 1 2 1 2 2 3 4 1M m HB T k k k k k b k kβ σ µ ψ α α σ µ= + Λ + − Λ ,  (53) 

( )( )
( )( )

( ) ( )
( ) ( )( )

2 2 2 5 6

2 3 4 1 2 1 1 4 1

2
1 2 2 3 4 1 1 2

2
1 2 2 2 3 4 1

1

1

1 ,

m H

M

m H

m H

C b k k k

k k k k k

b k k k k

b k k k

α σ ε ν

β σ µ µ µ γ ε ν

α α σ µ

α α σ ε ν µ

= Λ + −
+ Λ + + + − 

− Λ +

+ Λ + −

         (54) 
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( )( )( ) ( )( )( )
( ) ( )( )( )( )

( ) ( )( )

2 2 2 2 5 6 2 3 4 1 2

2
1 2 2 2 1 2 3 4 1

2
1 2 3 4 3 4 1 1 2 2

1

1

,

m H m H M

m H

m H

D b k b k k k k k

b k k k k k

k k k k k k b

α σ ε ν α β σ µ ν

α α σ ε ν µ

ψν µ α α σ

= Λ + − Λ + Λ +

− Λ + − +

+ − Λ

(55) 

( ) ( )( )2
1 2 2 2 1 2 3 4 3 4 11m HE b k k k k k k kα α σ ε ν ψν µ= Λ + − −           (56) 

Theorem 3.6. The Chikungunya basic model (1) to (9) undergoes backward 
bifurcation whenever the coefficient a in equation is positive. 

Proof. To prove this theorem, we use the Centre Manifold theory as in Castil-
lo-Chavez and songs [30] [31] see the theorem in Appendix A.  

Let 1HS x= , 2HV x= , 3HE x= , 1 4I x= , 2 5I x= , 6R x= , 7MS x= , 

8ME x= , 9MI x=  so that 1 2 3 4 5 6HN x x x x x x= + + + + +  and 

7 8 9MN x x x= + + . Further by using vector notation  
( )T

1 2 3 4 5 6 7 8 9X x x x x x x x x x= + + + + + + + +  Equations (1) to (9) can be written  

as ( )T
1 2 3 4 5 6 7 8 9

d
d
X f f f f f f f f f
t
= + + + + + + + +  as follow: 

( )

( )( )

( ) ( )

1 1 91
1

1 2 3 4 5 6

1 2 92
2 2 2

1 2 3 4 5 6

3 1 9
1 2 3 3

1 2 3 4 5 6

4
1 3 4 4

5
1 3 1 5

6
4 5 1 6

27

d
,

d
1d

,
d

d
1 ,

d
d

,
d

d
1 ,

d
d

,
d

d
d

M
H H

M

M

M
M

b x xx V kx
t x x x x x x

b x xx x k x
t x x x x x x

x b x
x x k x

t x x x x x x
x x k x
t

x
x x

t
x

x x x
t

bx
t

α
ψ

α ε
ν

α
ε

σ

σ γ µ δ

γ γ µ

α

= Λ + − −
+ + + + +

−
= − −

+ + + + +

= + − −
+ + + + +

= −

= − − + +

= + −

= Λ −
( )

( )

7 4 5
9 2 7

1 2 3 4 5 6

2 4 58
9 5 8

1 2 3 4 5 6

9
2 8 6 9

,

d
,

d
d

.
d

M

M M
M

x x x
x x

x x x x x x
S b x xx

x k x
t x x x x x x
x

x k x
t

β µ

α
β

σ




















+ 
− Λ − + + + + + 

+
= + Λ −

+ + + + + 

= −


    (57)

 

Because it’s not always convenient to use 1CR =  as bifurcation parameter, 
we choose *P P=  where *

2 mP bα=  as the bifurcation parameter such that,   

* 4

1 2 5

1
2

MP
M M M

 
=   + + 

,                   (58) 

where 

( )( )* * *
5 3 4 5 6 2 1 7 1 24 1mM k k k k x b x xα α ε= + − .             (59) 
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The Jacobian of (57) evaluated at 0E  with *
2 mb Pα = , denoted by *J  is 

given  

1 5

2 6

3

1 4
*

1 4

1

7 7 2

7 7 5

2 6

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0

M

k Q
k Q

k
k

J k

Q Q
Q Q k

k

ν

σ
σ

γ γ µ
µ β

σ

− − 
 − − 
 −
 

− 
 = − −
 

− 
 − Λ 

− 
 − 

    (60) 

where, 

( )

*
1 1

5
1 2 3 4 5 6

*
1 2

6
1 2 3 4 5 6

*
2 7

7
1 2 3 4 5 6

,

1
,

.

m

m

m

b x
Q

x x x x x x

b x
Q

x x x x x x

b x
Q

x x x x x x

α

α ε

α

=
+ + + + +

−
=

+ + + + +

=
+ + + + +

                 (61) 

It follows that (60) has a right eigenvector denoted by  

1 2 3 4 5 6 7 8 91, , , , , , , ,v v v v v v v v v v= , where 

( ) ( )
( )

( )

( )

5 1 2 6 1 5 9
1

1 2 1

6 1 5 9
2

1 2

1 9
3

3

1 1 9
4

3 4

1 1 9
5

3 4

,

,

,

,

1
,

Q k k Q k Q v
v

k k k

Q k Q v
v

k k
Q v

v
k
Q v

v
k k

Q v
v

k k

νψ ψ ν
νψ

ν
νψ

σ

σ

− + + +
=

−

− +
=

−

=

=

−
=

 

( )( )

( )

( )( )

1 4 1 1 9
6 2

3 4

2
4 3 7 1 1 9

7 2
3 4 2

7 1 4 1 1 9
8 2

3 4 5

9 9

1
,

,

1
,

.

M

Q k Q v
v

k k

k k Q Q k v
v

k k

Q Q k v
v

k k k
v v

γ σ

β

µ

σ σ

+ −
=

Λ +
=

+ −
=

=

                  (62) 

And a left eigenvector given by 1 2 3 4 5 6 7 8 91, , , , , , , ,w w w w w w w w w w= , where 
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2
1

1

2 2

7 7 6
3

3 4

6 7 7
4 5

3 4

,

,

,

,

ww
k

w w
Q w w

w
k k

w Q w
w w

k k

ν

γ

γ

=

=
+

=

−
= =

 

6 6

7 7

8 9

,
,

0.

w w
w w
w w

=

=

= =
                        (63) 

Computation of a 

( )
*2

1 1 11
2 * ** *1 9 1 21 2

,m mb x bf
x x x xx x

α α∂
= −

∂ ∂ ++
 

( )
( )
( )

( )

*2 2 2 2
1 11 1 1 1

2* *2 9 3 9 4 9 6 9 1 2

* *2
2 3 11 1

* * 3* *1 2 1 2 1 2

2 2 2
7 7 7 7

* * * * *
4 5 7 1 2
2 2 *

7 7 2
2 * ** *4 7 5 7 1 21 2

,

2
,

,

.

mb xf f f f
x x x x x x x x x x

x k xf k
x x x x x x

f f f x
x P x P x P x x

f f P
x x x x x xx x

α

ψψ

µ

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ +

−∂ −
= +

∂ ∂ + +

∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂ +

∂ ∂
= = −

∂ ∂ ∂ ∂ ++

          (64) 

( )

( )
( )

( )

( )
( )

2

, , 1

*
1 1

1 9 1 2 3 4 5 62* *
1 2

* *
1 3 2 3 1

1 2 9 2* * * * 3* *
1 2 1 2 1 2

*
2

7 7 4 5 2 * ** *
1 21 2

0,0

2

.

n
k

k i j
k i j i j

m

m

f
a v w w

x x

b x
v w w w w w w w

x x

b k x k x
v w w w

x x x x x x

Pv w w w
x xx x

α

α ψ ψ

µ

=

∂
=

∂ ∂

= + + + + +
+

  + +  − + +  + +  +  
 
 − + − + + 

∑

        (65) 

( )
2 *

7
7 4 5 7* * *

, , 1 1 2

.
n

k
k i

k i j i

f x
b v w v w w w

x P x x=

 ∂
= = + +  

∂ ∂ + 
∑          (66) 

3.4. Vaccine Impact Analysis 

Vaccine was believed to confer life-long immunity until 1990s. This was the 
norm as it was approximately correct for most available vaccine for infectious 
children diseases. But most vaccines used for combating adult infectious dis-
eases today are defective and thus immunity conferred on the recipients wane 
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with time. It is expected that the future Chikv vaccine will also be defective and 
hence the need to assess its effectiveness in CR  a community. In this paper, the 
vaccine impact analysis is done by differentiating effective reproductive number 
with respect to the proportion p of susceptible individuals vaccinated at 

equilibrium, according to [32], 
*

*
H

H

Vp
N

 
= 

 
 i.e., 

( )1 1
C CR R

p p
ε
ε

∂
=

∂ −
, i.e. since 

0 1ε< <  we have that 0CR
p

∂
<

∂
, hence CR  is a decreasing function of p. This 

means that a vaccination program with 0p >  and 0ε >  at equilibrium, the 
future vaccine will have a positive impact. Besides, there exist a Cp  such that 

( ) 1C CR p =  given by 1 11
CRε

 
− 

 
 and for vaccination of proportion of susceptible 

Cp p>  the number of new-cases reduces to zero faster than when Cp p< . 

4. Numerical Simulation 

To further verify the analytical results in the model, the ode 45 code embedded in 
matlab was used to simulate some parameters of the model. Table 1 provided val-
ues of the parameters while initial values of the state variables were chosen arbi-
trarily. Figures 2(A)-(D) and Figures 3(A)-(D) are simulation of the various 
model compartments with time. Figure 4 is the simulation of some compartments  
 

 

Figure 2. Plot of the various populations with parameters as in Table 1. (A) is the simu-
lation of susceptible human against time, the plot shows that the susceptible human de-
creases with time due to the proportion that gets infected but slows down after some days, 
perhaps due to the vaccination and other control measures. (B) is the simulation of the 
vaccinated compartment. The plot shows a steady increase initially, but began to slope 
down after few days, this could be due to the fact that a proportion of the class are infec-
tious as the vaccine is imperfect. (C) is the simulation of the exposed compartment with 
time, the plot shows a steady decline as members become infectious and progress to ei-
ther the symptomatic or asymptomatic compartment. Finally (D) is the simulation of the 
symptomatic compartment with time. The plot shows a steady decline and tends to zero 
after about 20 days. This could be attributed to recovery from the infection. 
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Figure 3. Plot of the various populations with parameters as in Table 1. (A) is the simu-
lation of the asymptomatic infected compartment with time, it shows a sharp increase at 
the onset of the epidemic, followed by a decline. (B) is the simulation of the recovered 
compartment with time, it shows a steady increase at the initial time, got to a peak and 
then remains a constant as time progresses. (C) is the simulation of susceptible mosquito 
compartment with time. It maintains a steady increase until perhaps due to short life 
cycle. (D) is the simulation of exposed mosquito compartment with time. The plot shows 
a steady decline with time as proportion progresses to infected compartment. 

 

 

Figure 4. Simulation of the Human populations with varying values of β. (A) is the effect 
of the vertical transmission (β) on the susceptible compartment, while (B), (C) and (D) is 
the effect on same on the vaccinated, exposed, and symptomatic infected human com-
partment respectively. It is obvious from the plots that β has negligible effect in all the 
compartments and hence on the transmission of Chikungunya virus according to the 
model analysis and simulation. 
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with various values of the vertical transmission rate ( )β . Figure 5 is a contour 
plot of the effective basic reproduction number as a function of recruitment rate 
of susceptible mosquito ( )MΛ  and vertical transmission rate ( )β  while Figure 
6 is the contour plot of effective basic reproductive number with varying values 
of vaccine efficacy ( )ε  and vaccinated proportion. Finally, Figure 7 is a simu-
lation of the new cases of Chikungunya with different values of vaccine efficacy 
( )ε  and vaccination rate ( )υ . The figures and detailed caption are presented 
below.   

 

 

Figure 5. Simulation of the chikv model displaying a contour graph of RC as a function of 
recruitment rate of susceptible mosquito; and recruitment rate of infected mosquito (β) 
with parameter values as listed in Table 1. 

 

 

Figure 6. Simulation of the chikv model displaying a contour graph of ( cR ) as a function 
of vaccinated human population and vaccine efficacy ( ε ); with parameter values as listed 
in Table 1. 
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Figure 7. Plot of the new-cases of Chikv model with varying values of vaccine efficacy 
and, proportion of vaccinated susceptible human population. For (A)  

0.6, 0.68, 1.0076, 0.63156C CR Pν ε= = = =  For (B)  
0.63, 0.78, 0.8727, 0.63156C CR Pν ε= = = = . 

5. Conclusion 

A deterministic mathematical model for Chikungunya virus dynamics was de-
veloped using the standard incidence approach. The model assumed that the 
offspring of infected mosquito is infected at birth (vertical transmission) and al-
so through blood meal from symptomatically and as-symptomatically infected 
human (horizontal transmission). For the subhuman population, only horizon-
tal transmission was considered and the virus infection in human is assumed 
fatal, though with a very low rate. The disease free and endemic equilibrium was 
obtained and analyzed for both local and global asymptotically stability. The 
analysis shows that the model undergoes backward bifurcation when the effec-
tive basic reproductive number 1CR ≤ . Numerical simulation of the model 
shows that the effect of vertical transmission of the mosquito sub-population in 
the dynamics of the virus is negligible, even when the rate is high as shown in 
Figures 4(A)-(D). Further, the contour plot of the effective basic reproductive 
number CR  with respect to the vaccine efficacy ε  and the proportion of sus-
ceptible vaccinated (Figure 6) gave the rates at which the CR  is above, below 
and equal to unity, this confirms that the use of imperfect vaccine will be effec-
tive. Figure 6 also reveals a linear relationship between the effective basic re-
productive number and the two parameters in question unlike Figure 5. Also 
the graph of Chikungunya new case (Figure 7) shows a decrease in new cases 
with high vaccine efficacy ε  and proportion of vaccinated susceptible ν . Hence 
buttressing the point made in Figure 6. 
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Appendix A 

Castilo-Chaevz and Song [3] 
Consider the following general system of ordinary differential equations with 

a parameter φ . 

( )d , :
d

n nx f x R R R
t

φ= × →  and ( )2 nf C R R∈ ×  

where 0 is an equilibrium point of the system (that is, ( )0, 0f φ =  for all φ ) 
and  

(A1) ( ) ( )0,0 0,0i
x

j

f
A D f

dx
 ∂

= =   
 

 is the linearization matrix of the system 

2.10 around the equilibrium 0 with φ  evaluated at 0; 

(A2) Zero is a simple eigenvalues of A and other eigenvalues of A have nega-
tive real parts; 

(A3) Matrix A has a right eigenvector w and left eigenvector v (each corres-
ponding to zero eigenvalues). 

Let kf  be the kth component of f and 
To do this we need the values of a and b given below:  

( )
2

, , 1
0,0

n
k

k i j
k i j i j

f
a v w w

x x=

∂
=

∂ ∂∑  

( )
2

, , 1
0,0

n
k

k i
k i i

f
b v w

x xφ=

∂
=

∂ ∂∑  

then, the local dynamics of the system around equilibrium point 0 is totally de-
termined by the signs of a and b, particularly, 
1) 0, 0a b> > , when 0φ <  with 1φ  , 0 is locally asymptotically stable and 

there exists a positive unstable equilibrium; when 0 1φ< 
, 0 is unstable 

and there exists a negative, locally asymptotically stable equilibrium; 
2) 0, 0a b< < , when 0φ < with 1φ  , 0 is unstable; when 0 1φ< 

, 0 is 
locally asymptotically stable equilibrium and there exists a positive unstable 
equilibrium; 

3) 0, 0a b< > , when φ  changes from negative to positive, 0 changes its stabil-
ity from stable to unstable. Correspondingly a negative unstable equilibrium 
becomes positive and locally asymptotically stable. 
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