
 
 
https://www.inosr.net/inosr-experimental-sciences/                                                                                    Eze et al 

63 
 

 

 

 

AI-Driven Optimization of Maximum Power Point Tracking 
(MPPT) for Enhanced Efficiency in Solar Photovoltaic Systems: A 
Comparative Analysis of Conventional and Advanced Techniques 

Val Hyginus Udoka Eze1*, Pius Erheyovwe Bubu1, Charles Ibeabuchi Mbonu2, Ogenyi 
Fabian C1 and Ugwu Chinyere Nneoma1 

1Department of Electrical, Telecom. & Computer Engineering, Kampala International University, Uganda 
2Department of Electrical and Electronic Engineering, Federal University of Technology 
Owerri, Imo State 
*Corresponding Author: Val Hyginus Udoka Eze, udoka.eze@kiu.ac.ug, Kampala International University, 
Western Campus, Ishaka, Uganda (ORCID: 0000-0002-6764-1721) 

 
ABSTRACT 

The growing global demand for clean, sustainable energy has driven extensive research into renewable energy 
technologies, with solar energy emerging as a highly promising solution. Solar photovoltaic (PV) systems are 
increasingly adopted for their ability to convert sunlight into electricity, providing an environmentally friendly 
alternative to fossil fuels. However, the performance of PV systems is significantly influenced by environmental 
factors, particularly solar irradiance and temperature, which lead to fluctuations in power output. This study 
explores the application of Artificial Intelligence (AI)-based Maximum Power Point Tracking (MPPT) techniques 
to optimize the efficiency of PV systems. AI-driven MPPT controllers, incorporating machine learning, fuzzy logic, 
and genetic algorithms, offer enhanced adaptability, responsiveness, and efficiency compared to traditional methods. 
The research focuses on the design, development, and evaluation of an AI-optimized MPPT controller prototype, 
demonstrating the potential of AI to overcome the limitations of conventional MPPT techniques. This optimization 
enhances the efficiency, stability, and scalability of solar energy systems, particularly in rural electrification and 
industrial energy management. Among traditional MPPT methods, the Optimized Adaptive Differential 
Conductance (OADC) technique is notable for its simplicity, cost-effectiveness, and ease of implementation, while 
the Scanning Particle Swarm Optimization (SPSO) technique stands out for its superior tracking accuracy and ability 
to achieve real-time convergence to the Maximum Power Point. 
Keywords: Artificial Intelligence, Maximum Power Point Tracking, Solar Photovoltaic Systems, Machine 
Learning, Fuzzy Logic, Genetic Algorithms, Renewable Energy 

 INTRODUCTION 
The increasing global demand for clean and 
sustainable energy sources has intensified research 
into renewable energy technologies, with solar 
energy emerging as one of the most promising 
solutions [1]. Solar photovoltaic (PV) systems have 
gained widespread adoption due to their ability to 
directly convert sunlight into electricity, offering a 
renewable and environmentally friendly alternative 
to fossil fuels [2,3,4,5]. However, the efficiency of PV 
systems is highly dependent on environmental 
conditions, particularly solar irradiance and 
temperature variations, which significantly influence 
power output [6,7]. These fluctuations pose a 

challenge in maintaining maximum power extraction, 
necessitating the implementation of effective control 
strategies to enhance system performance. Maximum 
Power Point Tracking (MPPT) techniques are 
essential for optimizing power generation in PV 
systems by dynamically adjusting the operating point 
to extract the highest possible power [8,9,10]. 
Conventional MPPT algorithms, such as Perturb and 
Observe (P&O) and Incremental Conductance (INC), 
have been widely employed due to their simplicity and 
ease of implementation [2]. However, these methods 
exhibit limitations, including slow convergence rates, 
steady-state oscillations, and reduced tracking 
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accuracy under rapidly changing weather conditions. 
Such drawbacks hinder the efficiency and stability of 
PV systems, particularly in applications requiring 
high reliability, such as microgrids and remote power 
systems [9,10]. Recent advancements in Artificial 
Intelligence (AI) have introduced novel approaches to 
overcoming the limitations of traditional MPPT 
techniques. AI-based methods, including machine 
learning algorithms, fuzzy logic controllers, and 
artificial neural networks (ANNs), offer enhanced 
adaptability and responsiveness to dynamic 
environmental conditions [12]. These intelligent 
MPPT controllers can predict optimal operating 
points, reduce tracking errors, and improve the 
overall efficiency of PV systems. The integration of 
AI into MPPT not only enhances energy harvesting 
capabilities but also contributes to the development of 

smarter and more resilient renewable energy systems 
[2]. This study focuses on the design, development, 
and fabrication of an AI-driven MPPT controller 
aimed at optimizing PV system performance. The 
research objectives include designing an MPPT 
system that incorporates AI-based optimization 
techniques, fabricating a functional prototype using 
embedded systems and advanced power electronics, 
evaluating its performance against conventional 
MPPT techniques, and exploring its scalability for 
applications in rural electrification and industrial 
energy management. By leveraging AI-driven MPPT 
controllers, this research aims to contribute to the 
advancement of efficient and intelligent solar energy 
systems, fostering sustainable energy solutions for 
diverse applications. 

Advanced MPPT Algorithms 
Maximum Power Point Tracking (MPPT) is 
essential for optimizing energy harvesting from solar 
panels. Traditional algorithms like Perturb and 
Observe (P&O) and Incremental Conductance (Inc-
Cond) are effective in stable conditions but struggle 
with fluctuating environmental factors. Advanced 
MPPT algorithms, utilizing techniques like machine 

learning, fuzzy logic, and genetic algorithms, offer 
real-time adaptation to varying conditions [2]. These 
algorithms improve efficiency by predicting optimal 
performance and making dynamic adjustments, 
leading to better energy harvesting and system 
resilience. They represent a shift towards smarter, 
more efficient solar power systems. 

Conventional (Non-Intelligent) MPPT Techniques 
Traditional Maximum Power Point Tracking 
(MPPT) techniques aim to optimize the power 
extraction from photovoltaic (PV) systems by 

dynamically adjusting the operating voltage or 
current. The most commonly used conventional 
MPPT algorithms include:

Perturb and Observe (P&O) 
The Perturb and Observe (P&O) technique operates 
by continuously adjusting the photovoltaic (PV) 
panel's operating voltage to maximize power 
extraction. This is achieved by incrementally 
perturbing the PV array's voltage and observing the 
resulting change in power (∆P) [14]. A positive 
change in power indicates that the voltage 
perturbation is moving the operating point (OP) 
closer to the Maximum Power Point (MPP), 

suggesting that further perturbation in the same 
direction will accelerate convergence to the MPP 
[12,13]. Conversely, a negative change in power 
signifies that the OP has deviated from the MPP, 
necessitating a reversal in the perturbation direction 
to guide it back toward optimal power output, as 
illustrated in Figure 1. The fundamental principle and 
operation of the P&O algorithm are further detailed 
in Equation (1). 

 
Figure 1: P-V Characteristics for P&O Algorithm [14,10] 

Equation (1) shows the working principle of the 
perturb & observe algorithm. The algorithm 

continuously decrements or increments with respect 
to reference voltage based on the previous data until 
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the MPP is attained. When  
𝑑𝑃

𝑑𝑉
 > 0, the operating 

voltage of the Photovoltaic array will be perturbing 
within a specified direction, which implies that 
perturbation moves the operating point of the 
Photovoltaic array towards the MPP. The Perturb & 
Observe technique, therefore, will continue to hover 

the PV voltage in the direction of the MPP. The 

reverse is the case when 
𝑑𝑃

𝑑𝑉
< 0, MPPT frequency or 

perturbation frequency is the number of valid 
perturbations covered by the Maximum power point 
tracking algorithm per second [14]. 

 
𝑊ℎ𝑒𝑛 𝛥𝑃 < 0, 𝑉(𝑗) > 𝑉(𝑗 − 1), 𝑡ℎ𝑒𝑛 𝑉𝑟𝑒𝑓 = 𝑉(𝑗 + 1)  =  𝑉 (𝑗)  −  𝛥𝑉

𝑊ℎ𝑒𝑛 𝛥𝑃 < 0, 𝑉(𝑗) < 𝑉(𝑗 − 1), 𝑡ℎ𝑒𝑛 𝑉𝑟𝑒𝑓 = 𝑉 (𝑗 + 1)  =  𝑉 (𝑗)  + 𝛥𝑉

𝑊ℎ𝑒𝑛 𝛥𝑝 > 𝑣(𝑗) < 𝑣(𝑗 − 1), 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑉𝑟𝑒𝑓 = 𝑣 (𝑗 + 1)  =  𝑣 (𝑗)  −  𝛥𝑣

𝑊ℎ𝑒𝑛 𝛥𝑃 > 0, 𝑉(𝑗) > 𝑉(𝑗 − 1), 𝑡ℎ𝑒𝑛 𝑉𝑟𝑒𝑓 = 𝑉 (𝑗 + 1)  =  𝑉 (𝑗)  + 𝛥𝑉

      

}
 

 
       (1) 

 
Incremental Conductance (INC) 

The Incremental Conductance (INC) algorithm is an 
improved MPPT technique that overcomes some 
limitations of the Perturb and Observe (P&O) method 
by using a more analytical approach to determine the 
Maximum Power Point (MPP). It achieves this by 
analyzing the relationship between incremental 
conductance and instantaneous conductance as shown 

in Equation (2). When these values are equal, the 
system is operating at the MPP. If the operating point 
is at the left of the MPP, an increase in voltage is 
required whereas when it is at the right of the MPP a 
decrease in voltage is required as shown in equation 
(3) [14,15]. 

 
𝑑𝐼

𝑑𝑣
= −

𝐼

𝑣
      𝐴𝑡 𝑀𝑃𝑃                                                                           (2) 

𝑑𝐼

𝑑𝑣
 >  −

𝐼

𝑣
                𝑙𝑒𝑓𝑡 𝑜𝑓 𝑀𝑃𝑃 

 𝑑𝐼 

𝑑𝑣
 <  −

𝐼

𝑣
              𝑅𝑖𝑔ℎ𝑡 𝑜𝑓 𝑀𝑃𝑃 

}                                                 (3)   

Where; V is the Voltage and I is the Current 
This method enables more accurate tracking of the 
MPP, particularly under rapidly changing irradiance 
conditions, as it eliminates steady-state oscillations 
that affect P&O as shown in Figure 2. However, INC 
is computationally more demanding and can exhibit 
slower response times in highly dynamic 
environments [10]. Despite this, its improved 

accuracy makes it a preferred choice for applications 
where precise power tracking is crucial, such as grid-
connected PV systems and hybrid renewable energy 
setups.The P&O MPPT regulates the PWM control 

signal until the condition 
𝑑𝐼

𝑑𝑉
+ 

𝐼 

𝑉
= 0  is satisfied. 

 
Figure 2: P-V Characteristic for Incremental Conductance Algorithm [10,14]ss 

Optimized Adaptive Differential Conductance (OADC) Technique 
This OADC mathematical model in equation (4) was 
computed using single diode model. It deals with 
comparing and balancing the impedance of the load 
with the impedance of the solar PV panel with respect 

to their respective conductance. The major difference 
between this technique and the existing conventional 
INC technique was that conventional INC 
differentiated the current and the voltage while 
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OADC differentiated current and voltage at its 
maximum power points. The advantage of OADC is 
that it accurately detects the MPP without much 
delay but it has a major drawback of low power 

conversion. This low power conversion has led to 
more research in this area to improve the power 
generated and transferred to the load.  

Υ = (
Impp

Vmpp
− 
dI

dV
)

=

(
𝛼𝑛𝐾𝑇
𝑞𝑅𝑠

 𝑙𝑜𝑔𝑒 (1 +
1

1000Io
) [1 + 𝑘𝑖(𝑇 − 𝑇𝑟𝑒𝑓)]

𝐺
𝐺𝑟𝑒𝑓

)  −  Io [𝑒𝑥𝑝 (
𝑞𝑉𝑚𝑝𝑝
𝛼𝑛𝐾𝑇

)]

𝑉𝑚𝑝𝑝

−
𝐼𝑜𝑞

⍺𝑛𝐾𝑇
exp (

𝑉𝑞

𝛼𝑛𝐾𝑇
)            (4) 

The resulting conductance in this technique is 
determined by the instantaneous panel conductance 

(
Impp

Vmpp
) and load conductance 

dI

dV
, as expressed in 

equation (4), where ϒ represents the resultant 

conductance. Ideally, for equation (4) to be satisfied, 
the resultant conductance must be zero [10]. Table 1 
shows the comparison of the most popular 
conventional MPPT Algorithms.

                                        Table 1: Comparison of P&O, INC and OADC [14,8] 

Specification  P&O INC OADC 

Efficiency  Medium about 95%, 
depending on the 
optimization method  

High about 98%, depending 
on the optimization method 

Excellent (98.5%) 

Complexity  Easy  Yes  Medium 
Implementation  Easy to implement as few 

parameters are measured  
Complex as the 
microcontroller is used  

Complex as complex algorithm 
is used 

Cost  Low  Medium   
Accuracy  Medium  High  Very High  
Advantages  Low cost, easy to 

implement  
No oscillation, easy to 
implement   

It locates MPP accurately and 
has a very good converging 
speed 

Drawbacks  Difficult to locate MPP Expensive and inability to 
detect the MPPT accurately 
during rapidly varying 
atmospheric conditions for  

Has low generated and 
transferred power  

AI-Based (Intelligent) MPPT Techniques 
The proposed AI-optimized MPPT controller 
integrates cutting-edge computational intelligence 
techniques to maximize solar energy harvesting and 
improve adaptability in varying environmental 
conditions. This system combines Machine Learning 

(ML), Fuzzy Logic (FL), and Genetic Algorithms 
(GA) to dynamically predict, optimize, and control 
the MPPT process. Here's a deeper exploration of 
each component. 

 Machine Learning (ML) 
Machine learning (ML) algorithms have emerged as 
a powerful tool for improving MPPT performance by 
leveraging data-driven approaches to predict and 
track the Maximum Power Point (MPP). ML-based 
MPPT controllers, such as regression models and 
neural networks, are trained on large datasets that 
include historical and real-time data on solar 
irradiance, temperature, and system performance 
metrics. These models learn from past behavior and 
continuously adapt to changes in environmental 
conditions, such as cloud cover or seasonal variations, 
enabling the MPPT system to optimize power output 
even under dynamic and unpredictable weather 
patterns [16,17]. The primary advantage of using 
machine learning in MPPT is its data-driven 
approach, which allows the system to adapt to a wide 

range of environmental conditions. The model can be 
trained on extensive datasets containing various 
weather scenarios and solar panel performance, 
enabling it to generalize and perform efficiently in 
diverse conditions. Additionally, ML-based systems 
benefit from predictive power—the ability to 
forecast the optimal operating point of the system 
even without perfect knowledge of future weather 
conditions [17]. This capability enables the MPPT 
controller to make intelligent adjustments in real-
time, maximizing energy production and enhancing 
the system's overall efficiency. The adaptability and 
precision of machine learning make it a promising 
solution for advanced MPPT applications, 
particularly in complex and variable environments, 
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such as remote areas or regions with highly 
fluctuating weather patterns.
                                                                             Fuzzy Logic (FL) 
Fuzzy Logic (FL) offers a powerful approach to 
MPPT by providing robust decision-making 
capabilities in environments characterized by 
uncertainty and imprecision, which are common in 
renewable energy systems. In solar energy systems, 
environmental factors like fluctuating sunlight, 
temperature variations, and changing load demands 
introduce ambiguity that can challenge conventional 

MPPT methods [18,2,14]. Fuzzy Logic, with its 
tolerance for such uncertainty, ensures that the 
MPPT algorithm adjusts smoothly and efficiently in 
response to these dynamic conditions, leading to 
better power extraction.  Figure 3 represents the 
Block Diagram of the Designed Fuzzy Logic MPPT 
System. 

 
Figure 3: Block Diagram of Designed Fuzzy Logic MPPT System 

A key feature of FL is its rule-based reasoning, 
where fuzzy rules (e.g., "If solar irradiance is high, 
then increase voltage input") are applied to make real-
time control adjustments. These rules enable the 
system to continuously adapt to the varying 
conditions, ensuring the MPPT controller tracks the 
MPP more accurately [19,20]. Furthermore, FL's 
tolerance to uncertainty allows it to operate 
effectively even when measurements are not exact or 

fluctuate due to environmental changes. This reduces 
the reliance on precise inputs, making it especially 
useful in scenarios where accurate real-time data is 
not always available. FL's ability to manage and adapt 
to uncertainty makes it highly effective in maximizing 
the performance of solar power systems, providing 
smoother, more reliable operation compared to 
traditional algorithms under variable conditions.

 

𝐸(𝑘) =
𝑃(𝑘) − 𝑝 (𝑘 − 1)

𝑉(𝑘) − 𝑉 (𝑘 − 1)
                                                          (4) 

∆𝐸(𝑘) =  𝐸(𝑘) − 𝐸(𝑘 − 1)                                                      (5) 

The fuzzy controller for solar Maximum Power Point 
Tracking (MPPT) utilizes two input variables: error 
(E) and change in error (∆E). The selection of the 
error input depends on the designer’s expertise and 
the specific characteristics of the solar PV system. A 
common approach is to define the error as the slope 

of the power-voltage (P-V) curve, dP/dVdP/dV, 
since it equals zero at the Maximum Power Point 
(MPP), as expressed in Equation (4). The change in 
error (∆E) represents the difference between 
successive error values and is defined in Equation (5).

Genetic Algorithm (GA) 
Genetic algorithms (GA) offer a powerful 
optimization technique for improving the 
performance of MPPT controllers by dynamically 
adjusting key system parameters, such as voltage and 
current thresholds [21]. GAs simulate natural 
evolutionary processes, including selection, 

crossover, and mutation, to evolve a population of 
candidate solutions over successive generations. This 
iterative process allows the algorithm to identify the 
most optimal settings for the MPPT controller based 
on system performance and environmental 
conditions. A significant advantage of using GA in 
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MPPT is its dynamic optimization capability. By 
continuously fine-tuning the control parameters in 
real-time, GA adapts to changing environmental 
factors and system behavior, ensuring that the system 
operates at maximum efficiency. Additionally, GA's 
global search capability distinguishes it from 
traditional MPPT methods like Perturb and Observe 
(P&O). While P&O typically operates within a limited 
search space, GA can explore a broader range of 
possible solutions, allowing it to converge on a more 

optimal solution, particularly in complex or highly 
dynamic scenarios [22]. This makes GA particularly 
useful in situations where environmental conditions 
vary greatly, enabling more precise and efficient 
tracking of the MPP. GA-based MPPT techniques 
offer greater flexibility and robustness, making them 
an ideal choice for advanced solar power systems that 
require high performance and adaptability.

Scanning Particle Swarm Optimization (SPSO) Technique 
Scanning Particle Swarm Optimization (SPSO) is a 
metaheuristic optimization technique known for its 
high accuracy and superior performance in 
identifying the Global Peak (GP) while avoiding the 
pitfalls of getting trapped at Local Peaks (LP), which 
often occur in traditional Particle Swarm 
Optimization (PSO) methods. However, during 
Partial Shading Conditions (PSC), the position of the 
Global Peak shifts, complicating the ability of 
conventional PSO techniques to capture the new GP 
unless they undergo reinitialization. This 
reinitialization process introduces a delay in tracking 
the new GP, which may lead to premature 
convergence [23]. To address this challenge, a novel 
approach was introduced in [23], which enables the 
detection of the new GP without the need for 
reinitialization. The SPSO design works by directing 

a particle to the anticipated peak regions to search for 
a higher power peak than the current GP. If a new, 
higher GP is found, the PSO operating point is 
immediately shifted to this new peak. If the new GP 
is lower than the current one, it is discarded, and the 
old GP is retained. While this technique effectively 
prevents premature convergence a common issue 
with conventional PSO it does not fully resolve the 
problem of delayed convergence speed. The key 
limitations of SPSO include its slower convergence 
rate and increased programming complexity. Despite 
these drawbacks, SPSO's strong performance makes 
it a promising candidate for improvement, which is 
why it was selected for enhancement in this research. 
The goal is to address the issues of delayed 
convergence speed and programming complexity, 
ensuring faster and more efficient MPPT operation.

Table 2: Summary of MPPT Existing Technique [14] 
MPP 
Techniqu
e 

Efficiency  Converg
ence 
speed 

Oscill
ation 

Cost Implementation 
complexity 

Sensed parameters Track 
real 
MPP 

Reliability  

P&O Medium 
(95%) 

Varies No Relatively 
lower 

Low Voltage Yes Low 

INC Max 
(98%) 

Varies No Expensive Medium Voltage, Current Yes Medium 

FSCC Poor Medium Yes Inexpensive Medium Current No Low 

FOCV Poor Medium Yes Inexpensive Low  Voltage No Low 

PSO Max 
(99.8) 

Fast No Expensive Medium 
(Digital) 

Multi-variable Yes High  

FLC Max Fast Yes Expensive High (Digital) Varies Yes Medium 

ANN Max Fast Yes Expensive High (Digital) Varies Yes Medium 

IINC Max Varies No Expensive Medium (Digital) Voltage, Current Yes High 

AP&O Medium  Fast  No  Expensive  High (Digital)    Current  Yes  High  

IPSO Max Fast  No  Expensive  High (Digital) Multi-variable Yes  Medium  

T-S 
fuzzy 

Max Fast  Yes  Expensive High (Digital)  Varies  Yes Low  

MAPSO Max Fast  No  Expensive  High (Digital) Multi-variable Yes  Low  

SPSO Excellent 
(99.1%) 

fast No Expensive High (Digital) Multi-variable Yes  Medium  

OADC Excellent 
(98.5%) 

Very fast No Moderate  Digital Vmpp, Impp Yes  High 

ML Excellent 
(98.9%) 

Very fast No  Expensive Digital  Multi-variable Yes  High   

Table 2 shows that MPPT techniques can be broadly 
classified into two categories known as intelligent-
based and non-intelligent-based methods. Among the 
non-intelligent MPPT techniques, the optimized 

adaptive differential conductance (OADC) method 
stands out due to its simplicity, cost-effectiveness, and 
ease of implementation. However, it still suffers from 
limitations such as reduced tracking speed under 
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Partial Shading Conditions (PSC) and suboptimal 
power conversion efficiency. Conversely, intelligent-
based MPPT techniques have demonstrated superior 
performance compared to their non-intelligent 
counterparts. Among these, the Scanning Particle 

Swarm Optimization (SPSO) technique emerges as 
the most effective, owing to its high tracking accuracy 
and ability to achieve real-time convergence to the 
Maximum Power Point.

                                                                       Integrating the AI Techniques 
By combining machine learning (ML), fuzzy logic 
(FL), and genetic algorithms (GA), an AI-optimized 
MPPT controller can significantly enhance the 
performance of solar power systems [23,24]. The 
integration of these techniques enables the system to 
adapt dynamically to environmental conditions, 
ensuring that the MPPT controller adjusts in real-
time to fluctuations in solar irradiance, temperature, 
and load demands. This adaptability improves the 
overall efficiency and power output of the solar 
system, especially in variable and unpredictable 
environments. Moreover, the system handles 
uncertainty and vagueness effectively, as each AI 
technique is capable of managing imprecise or 
incomplete data [21]. Fuzzy logic manages 
ambiguity in inputs, ML algorithms predict optimal 
points based on historical data, and GA searches for 
the best possible solution [24,25]. This collective 
strength ensures that the system remains robust 

under diverse and changing conditions, enhancing 
long-term reliability. Additionally, the combined 
capabilities of GA’s global search, ML’s predictive 
power, and FL’s flexibility enable the system to 
achieve global optimization of control parameters, 
such as voltage and current thresholds. This allows 
the MPPT controller to explore a wide solution space 
and converge on the most efficient operating point, 
ensuring better accuracy and performance in varying 
operational scenarios. Integrating these AI 
techniques into MPPT control systems leads to more 
precise, efficient, and reliable MPPT performance, 
enhancing the overall effectiveness of solar power 
systems under both steady-state and dynamic 
conditions. This represents a significant advancement 
over traditional methods, offering a more intelligent 
and adaptive solution for maximizing solar energy 
harvesting. 

Benefits 

 Improved efficiency: AI-based techniques 
continuously optimize the MPPT process, 
enabling better energy harvesting from the 
solar array. Machine learning algorithms 
predict and adjust operating conditions in 
real-time, while genetic algorithms and 
fuzzy logic ensure the system operates at the 
optimal point, even as environmental 
conditions fluctuate. This leads to higher 
overall system efficiency and more reliable 
power generation. 

 Higher adaptability: AI-driven MPPT 
systems can learn and adapt to changing 
environmental conditions, such as varying 
sunlight intensity, seasonal changes, and 
temperature fluctuations. These systems can 
also adjust to hardware degradation over 

time, ensuring that performance remains 
high even as components, like solar panels or 
batteries, age. This adaptability ensures 
long-term efficiency without requiring 
constant manual adjustments. 

 Reduced complexity: AI-based MPPT 
methods streamline system operation by 
reducing the need for manual calibration and 
intervention. The system can automatically 
adjust its control parameters, such as voltage 
and current thresholds, based on real-time 
data and evolving environmental conditions. 
This automation simplifies maintenance, 
reduces human error, and makes the system 
more reliable and easier to manage in the 
long run.

                                                                  Fabrication & Implementation 
The Hardware Design of the AI-optimised MPPT 
Controller integrates advanced components and 
technologies to maximize solar power efficiency 
through real-time monitoring, data processing, and 

dynamic energy regulation [6,25]. Below is a detailed 
breakdown of the key hardware components and their 
functionalities.

a. Microcontroller/Embedded System 
The microcontroller (either Arduino or STM32) 
serves as the central processing unit (CPU) for the 
MPPT controller, processing sensor data and 
implementing AI-based MPPT algorithms to 
optimize energy conversion. Arduino is particularly 
well-suited for simpler applications or prototyping 
due to its user-friendly design and ease of use, making 
it an ideal choice for basic MPPT systems 

[26,27,28,29,30]. In contrast, STM32 offers higher 
processing power and greater flexibility, making it 
the better option for advanced applications that 
require real-time optimization and the 
implementation of complex AI techniques such as 
machine learning, fuzzy logic, and genetic algorithms 
[31]. The microcontroller ensures seamless data 
acquisition and real-time processing, enabling the 
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system to dynamically adjust the MPPT parameters 
to maintain optimal performance as environmental 
conditions fluctuate. This capability ensures that the 

system operates efficiently under a wide range of 
conditions, maximizing the solar energy harvested. 

b. Power Electronics 
Metal-Oxide-SemiconductorField-Effect Transistors 
(MOSFETs) are used as high-efficiency switches to 
regulate the flow of power from the solar panel to the 
load or storage system. Their fast-switching speeds 
and low on-resistance make them ideal for energy 
regulation, minimizing energy loss and ensuring 
efficient power conversion. MOSFETs play a crucial 
role in maintaining the system's overall performance 
by enabling rapid and precise adjustments to the 
power flow [32,33]. DC-DC Converters are 
employed to adjust the voltage output to meet the 
specific requirements of the load or battery, either by 
stepping up (boosting) or stepping down (buck) the 
voltage [34,35]. Buck Converters are commonly used 

to reduce the voltage for battery charging or to 
supply power to a load, ensuring efficient energy 
transfer without excessive power loss. On the other 
hand, Boost Converters are used to increase the 
voltage, when necessary, particularly when the 
energy stored in the system requires higher voltage 
levels for efficient distribution or storage. Both types 
of converters operate with high efficiency, ensuring 
minimal losses during power conversion and 
optimizing the transfer of energy across the system. 
This ensures that the solar power system delivers 
stable and reliable energy to meet varying demands. 

c. Sensors 
Voltage and Current Sensors are integral to the 
monitoring and optimization of solar power systems, 
as they continuously track the output voltage and 
current from the solar panels. These sensors provide 
real-time data essential for power calculations and 
maximum power point (MPP) tracking, which is 
crucial for maximizing energy conversion efficiency. 
The Voltage Sensor measures the voltage across the 
solar panel, helping determine the operating point 
and track the MPP [36,37]. Accurate voltage 
measurement allows the system to adjust its 
parameters to optimize energy conversion and ensure 
efficient operation. Similarly, the Current Sensor 

measures the current, and when combined with the 
voltage data, it enables real-time power calculations 
using the formula as shown in Equation (6). This 
enables precise energy management, ensuring that 
the solar system operates at its optimal power point. 
High-accuracy sensors with wide measurement 
ranges are essential for maintaining reliable MPP 
tracking and ensuring the system performs optimally. 
These sensors ensure that fluctuations in both 
voltage and current are precisely captured, 
supporting the efficient and continuous operation of 
the solar power system.

P = V×I                            (6) 
Where; P is the output Power; V is the Voltage and I is the Current 

d. Communication Interface 
The Communication Interface of the MPPT system 
enables remote monitoring and performance analysis, 
providing users with critical insights into the 
system's status and efficiency. Equipped with IoT-
enabled Monitoring, the MPPT controller allows for 
seamless connectivity and real-time monitoring 
through communication modules like ESP8266 or 
ESP32 (for Wi-Fi) and SIM800 (for GSM) [38,39]. 
These modules facilitate communication between the 
MPPT system and external devices such as 
smartphones, tablets, or cloud servers, ensuring users 
can remotely access and manage the system’s 
performance. Additionally, Data Logging 
continuously tracks essential performance metrics—
such as voltage, current, temperature, and power 
output—in real-time, providing a detailed record that 
can be analyzed to optimize system performance and 
identify any issues [40,41]. With Cloud Integration 
using platforms like ThingSpeak, Blynk, or custom 
cloud-based solutions, users can access both real-time 

and historical data, track energy generation trends, 
and adjust system parameters from anywhere, 
ensuring optimal operation and flexibility [42,43]. 
This integrated communication interface enhances 
the system’s usability, allowing users to make 
informed decisions, improve efficiency, and ensure the 
reliable production of solar energy. 

 

 

 

 

 

e. Integration of Components 
The integration of these components ensures the 
efficient operation of the AI-optimized MPPT 

controller by providing key functionalities that 
enhance system performance. Real-Time Data 
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Processing is facilitated by the microcontroller, which 
processes sensor data to adjust the MPPT algorithm, 
ensuring the system efficiently tracks the maximum 
power point. Dynamic Control is achieved through 
the use of MOSFETs and DC-DC converters, which 
regulate power conversion and adapt rapidly to 
fluctuating environmental conditions, ensuring 
optimal energy flow [34,35]. Additionally, Remote 
Monitoring is made possible through the IoT 
interface, allowing users to monitor and control the 
system remotely, thereby enhancing both user 
experience and system optimization. The Benefits of 
this integration include Efficient Power 

Management, as the system minimizes energy loss 
through optimized use of MOSFETs and DC-DC 
converters, ensuring effective solar energy harvesting 
[32,33]. The Adaptive Control enabled by machine 
learning algorithms allows the system to adjust 
dynamically to changing conditions, further boosting 
its efficiency in varying environmental scenarios. 
Moreover, Remote Accessibility through IoT-
enabled communication improves ease of use, 
facilitates system maintenance, and simplifies 
troubleshooting, contributing to the overall 
reliability and convenience of the solar power system.

Software Implementation of the AI-Optimized MPPT Controller 
The software implementation for the AI-optimized 
MPPT controller involves programming both the 
AI-based control logic and the embedded system 
firmware. The objective is to implement an intelligent 

and adaptive algorithm that maximizes the power 
extraction from the solar panels by leveraging 
machine learning, fuzzy logic, and genetic algorithms. 

MPPT Algorithm Implementation 
AI-Based Control Logic 

The MPPT controller utilizes an AI-based algorithm 
that dynamically adjusts the operating point of the 
solar panel to extract the maximum possible power. 
This advanced control logic incorporates several AI 
techniques, each serving a unique purpose to optimize 
the system’s performance: 

 Machine Learning (ML): ML predicts the 
Maximum Power Point (MPP) based on 
historical data, real-time solar irradiance, 
and temperature conditions. The ML model 
is trained to identify patterns and adjust the 
system for optimal power output [42,43]. 

 Fuzzy Logic (FL): FL handles uncertainty 
and imprecision in environmental factors, 

such as fluctuating sunlight and 
temperature, by providing decision-making 
rules for adjusting the voltage and current. 
This helps the system adapt to variable 
conditions effectively [19,20]. 

 Genetic Algorithm (GA): GA is used to 
dynamically optimize the MPPT control 
parameters by simulating natural 
evolutionary processes. The algorithm 
adapts based on system performance and 
environmental conditions, ensuring 
maximum efficiency [21,22]. 

Implementation in Python/C++ 
The MPPT algorithm can be implemented in either 
Python or C++, depending on system requirements 
and application stage. 

 Python is ideal for simulating and training 
machine learning models. It enables rapid 
development and testing of AI control logic. 
Python libraries such as TensorFlow, Scikit-
learn, and Keras can be used to train, test, 
and evaluate ML models, making it a 
suitable choice for initial development and 
experimentation. 

 C++ is preferred for embedded applications 
where performance is critical. It ensures 
high-performance execution of the AI-based 
control logic on microcontrollers, offering 
low-latency control over power electronics. 
C++ code is optimized for real-time 
processing and efficient memory 
management, which is essential for on-
device performance [44]. 

Algorithm Workflow 
1. The controller continuously monitors the 

output voltage and current from the solar 
panels. 

2. AI models process the real-time data to 
predict the optimal operating point. 

3. Control parameters, such as voltage and 
current, are dynamically adjusted using the 
selected AI techniques. 

4. The power conversion system (DC-DC 
converters) is adjusted to ensure the solar 
panel operates at its maximum power point, 
optimizing the energy conversion process. 
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Data Processing 
AI Model Training 

For an effective MPPT control system, AI models 
must be trained using real-world solar data to 
accurately predict the optimal operating point of the 
solar system [45]. The training process begins with 
data collection, where historical solar data—such as 
solar irradiance, temperature, panel voltage, current, 
and power output—is gathered from experimental 
setups, real-world solar farms, or simulated 
environments. The quality and quantity of this data 
are vital for training robust models. Following data 
collection, preprocessing is applied to clean and 
normalize the data, addressing issues like missing 
values, scaling features (such as voltage and current), 
and selecting relevant factors that influence power 
generation. Proper preprocessing ensures that the 
data is in a suitable form for effective model training. 
In the next step, training the model, supervised 
learning techniques like regression or neural 
networks are used to teach the model the relationship 

between environmental variables (e.g., irradiance and 
temperature) and the maximum power point (MPP). 
The model learns to predict the MPP based on these 
input conditions. After training, the model undergoes 
validation and testing using a separate dataset to 
evaluate its performance and ensure it generalizes 
well to new data. If necessary, the model can be fine-
tuned or retrained with additional data or improved 
algorithms. Finally, once the model is optimized, it is 
deployed and integrated into the embedded system’s 
firmware for real-time inference on the 
microcontroller [46]. This allows the system to 
dynamically adjust to changing environmental 
conditions and accurately track the MPP. Through 
this comprehensive training process, the AI-based 
MPPT controller can efficiently adapt to varying 
conditions, ensuring optimal solar energy conversion 
and maximizing system performance in real time. 

Embedded System Programming 
a. Microcontroller Firmware Development 

The microcontroller firmware is crucial for enabling 
real-time tracking of the solar panel's performance 
using an AI-based Maximum Power Point Tracking 
(MPPT) algorithm [47]. It performs several critical 
functions to ensure the MPPT controller operates at 
optimal efficiency. First, it facilitates real-time data 
acquisition by interfacing with voltage and current 
sensors, collecting live measurements from the solar 
panel. This data is essential for determining the 
optimal operating point (Maximum Power Point), 
allowing the system to dynamically adjust to changes 
in environmental conditions such as variations in 
sunlight and temperature. Next, the firmware 
executes the control logic of the AI-based MPPT 
algorithm, which may include techniques like 
machine learning, fuzzy logic, or genetic algorithms 
[48]. This allows the system to continuously adjust 
the solar panel's operating point in real time to 

maximize power generation under varying 
conditions. Additionally, the firmware integrates 
with power electronics by sending control signals 
to components like MOSFETs and DC-DC 
converters [34,35]. These signals manage the flow of 
energy between the solar panel, load, and battery, 
ensuring efficient power conversion and optimal 
energy harvesting. Finally, the firmware supports a 
communication interface for IoT-enabled monitoring, 
handling communication protocols like Wi-Fi, 
Bluetooth, or GSM. This enables the transmission of 
performance data to external devices, such as mobile 
apps or cloud platforms, which facilitates remote 
monitoring, analysis, and control of the MPPT 
system [49]. Through these functions, the firmware 
ensures the MPPT system is responsive, efficient, and 
accessible for optimal solar power management. 

b. Embedded C/C++ Programming 
The microcontroller firmware for the MPPT 
controller is typically developed using C or C++, 
which are ideal programming languages for 
embedded systems due to their low-level control, 
high performance, and real-time processing 
capabilities. The development process involves 
several critical tasks to ensure optimal operation. 
Sensor Integration is one of the primary tasks, 
where the firmware interfaces with voltage and 
current sensors, typically using communication 
protocols like ADC (Analog-to-Digital Conversion) 
or I2C/SPI. These protocols facilitate accurate 
measurement of the solar panel’s voltage and current, 
providing the real-time data necessary for power 
calculations and MPP tracking. Real-Time 
Execution is essential for the firmware to ensure 

continuous tracking and adjustment of the solar 
panel’s operating point. The control loop needs to 
execute at a high frequency (e.g., 1 kHz or higher), 
ensuring that the system can react to environmental 
changes and maintain system stability without 
introducing delays that could lead to energy losses 
[44]. Additionally, Optimization for Memory and 
Power is a critical aspect of embedded system design. 
Since embedded systems have limited memory and 
processing power, the firmware must be optimized for 
efficient memory usage while minimizing power 
consumption [36]. This ensures the system operates 
effectively within these constraints, helping to extend 
the longevity of the system, especially when powered 
by renewable energy sources such as solar power. 
Efficient memory management and low-power 
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operation are key factors in maximizing system 
performance and lifespan.

c. Embedded Software Development Tools 
Developing embedded system firmware typically 
involves using specialized tools and integrated 
development environments (IDEs) to write, debug, 
and flash the code to the microcontroller. These tools 
streamline the development process, providing 
essential support for hardware integration, real-time 
debugging, and efficient code management. Some of 
the commonly used tools include: 
Arduino IDE: This IDE is widely used for Arduino-
based microcontrollers, making it a popular choice for 
hobbyists and rapid prototyping. It allows developers 
to write and upload C++ code to the board easily. The 
Arduino IDE provides a user-friendly interface and 
supports various libraries, which simplify sensor 
integration, hardware communication, and peripheral 
management, making it an excellent choice for 
simpler or entry-level MPPT system projects [26]. 
STM32CubeIDE: For STM32-based 
microcontrollers, STM32CubeIDE offers a more 

advanced development platform. It enables 
developers to write, debug, and flash firmware while 
providing extensive support for the STM32 
peripherals, debugging tools, and software libraries 
specific to the STM32 family. This IDE is particularly 
suitable for more complex applications requiring high 
processing power, real-time optimization, and the 
integration of AI-based techniques such as machine 
learning, fuzzy logic, or genetic algorithms in MPPT 
controllers [20]. 
Both tools offer integrated features that make the 
development process more efficient, whether working 
with simpler microcontroller setups or more 
advanced embedded systems. These IDEs ensure that 
developers can easily write optimized firmware, 
debug the system in real-time, and flash the final code 
to the microcontroller for smooth operation as 
summarized in Table 3.

Table 3: Summary of the similarities and limitations of Embedded System Programming 

Aspect Microcontroller Firmware 
Development 

Embedded C/C++ 
Programming 

Embedded Software 
Development Tools 

Purpose Enables real-time tracking of 
solar panels using AI-based 
MPPT algorithms. 

Provides low-level control, 
high performance, and real-
time processing for firmware 
development. 

Provides an environment 
for writing, debugging, and 
flashing firmware to 
microcontrollers. 

Functionality Acquires real-time sensor data, 
executes AI-based MPPT 
control, integrates power 
electronics, and enables IoT 
communication. 

Supports direct hardware 
interaction, real-time 
execution, memory and 
power optimization. 

Streamlines code 
development, debugging, 
and microcontroller 
programming. 

Key Features Implements machine learning, 
fuzzy logic, and genetic 
algorithms for MPPT. 
Interfaces with MOSFETs and 
DC-DC converters for power 
management. 

Uses ADC, I2C, and SPI for 
sensor integration. Requires 
optimization for memory 
efficiency and low-power 
operation. 

Includes tools like Arduino 
IDE (for rapid prototyping) 
and STM32CubeIDE (for 
advanced real-time 
processing). 

Performance 
Consideration
s 

Real-time processing ensures 
optimal power tracking and 
energy efficiency. 

High-speed execution (e.g., 1 
kHz control loop) ensures 
system responsiveness. 

Debugging tools optimize 
firmware performance. 

Contrast Focuses on the firmware’s 
ability to control and monitor 
the MPPT system efficiently. 

Concentrates on how C/C++ 
provides the necessary low-
level programming for 
firmware development. 

Emphasizes the role of IDEs 
in simplifying and 
enhancing firmware 
development. 

Limitations Requires complex algorithm 
implementation and efficient 
power management. 

C/C++ development can be 
challenging due to memory 
constraints and debugging 
complexity. 

Arduino IDE is limited for 
advanced real-time 
applications, while 
STM32CubeIDE requires 
expertise in embedded 
system design. 
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Renewable Energy Integration 
The AI-optimized MPPT controller plays a crucial 
role in enhancing the efficiency, adaptability, and 
energy management of renewable energy systems 
[4,51,52,53]. Its integration into various 
applications—such as off-grid solar systems, hybrid 
solar-wind systems, and industrial solar-powered 

factories—results in maximized power output, 
optimized resource use, and sustainable energy 
solutions [54,55,56]. Below is a detailed exploration 
of how the AI-optimized MPPT controller can be 
effectively integrated into these systems. 

 Off-Grid Solar Systems: Providing Stable Power Supply for Rural Areas 
Off-grid areas, especially in rural regions, often face 
unreliable access to central power grids, making solar 
energy a viable solution. However, the variability in 
solar irradiance and environmental conditions can 
hinder consistent power generation. AI-optimised 
MPPT Integration addresses this challenge by 
enhancing the efficiency and performance of off-grid 
solar systems. The AI-optimized MPPT controller 
maximizes power extraction from solar panels, even 
amidst fluctuating sunlight, by continuously 
monitoring and adjusting system operations with 
advanced AI-based algorithms [57,58]. This real-
time adaptability ensures high efficiency throughout 
the day. Additionally, the controller utilizes machine 
learning techniques to predict power output based on 

weather variations such as cloud cover and seasonal 
changes, preventing energy wastage and improving 
system reliability. By optimizing energy extraction, 
the system minimizes the need for oversized storage 
systems, which are often costly in off-grid locations. 
It also extends battery life by charging at the most 
efficient voltage, ensuring long-term sustainability 
[59,60]. The impact of this integration includes 
improved energy access in rural communities, 
ensuring a stable and affordable power supply, cost 
reduction in solar infrastructure and energy storage 
systems, and enhanced sustainability as solar energy 
is harnessed more efficiently, reducing reliance on 
fossil fuels. 

Optimizing Energy Utilization from Multiple Renewable Sources 
Hybrid solar-wind systems face the challenge of 
balancing the fluctuating energy outputs from both 
renewable sources, which are subject to varying 
weather conditions. Ensuring a consistent energy 
supply while optimizing the contributions from both 
solar and wind energy is crucial for maximizing 
system efficiency [61,62,63]. AI-Optimized MPPT 
Integration addresses this challenge by providing 
advanced solutions. The AI-optimized MPPT 
controller can be seamlessly incorporated into hybrid 
systems, efficiently managing inputs from both solar 
and wind energy. Machine learning models predict 
the most favorable energy source based on real-time 
data, such as wind speed, solar irradiance, weather 
forecasts, and historical trends. To balance energy 
sources, fuzzy logic algorithms enable the system to 
make real-time decisions, selecting the most effective 
energy source at any given moment. For example, 

when wind speeds are low, the system can rely more 
heavily on solar power, and vice versa, ensuring 
optimal performance. The controller also adjusts the 
MPPT for solar panels and optimizes the power point 
for wind turbines, ensuring cohesive operation across 
the entire system. Additionally, genetic algorithms 
fine-tune the control parameters for each energy 
source, enabling efficient conversion and storage of 
energy from both wind and solar, ultimately 
maximizing the overall efficiency of the hybrid 
system [64,65,66,67,68]. The impact of this 
integration includes an optimized energy mix from 
both solar and wind, resulting in a more reliable and 
consistent power supply, increased energy output as 
the system maximizes energy generation when one 
source is more productive than the other, and reduced 
dependence on external power grids, contributing to 
greater energy resilience. 

Enhancing Energy Management in Solar-Powered Factories 
Industrial applications that adopt solar energy often 
face the challenge of aligning solar power generation 
with peak demand periods, making it crucial to 
manage energy output effectively to improve 
operational efficiency and reduce energy costs 
[69,70,71]. AI-Optimized MPPT Integration 
provides a solution by ensuring power supply 
stability. The AI-optimized MPPT controller keeps 
solar panels operating at their maximum power point, 
even with fluctuating environmental conditions such 
as changes in weather or time of day, ensuring a 
continuous and reliable energy supply to industrial 
facilities . The controller also enables peak load 
management by integrating with energy storage 
systems to store surplus power generated during 

daylight hours, which can be used during peak 
demand periods. Through AI-driven predictions of 
solar generation patterns, the system schedules 
energy storage and consumption accordingly, 
reducing reliance on grid power. Furthermore, the 
system employs real-time data analysis and machine 
learning for advanced fault detection and predictive 
maintenance, identifying anomalies or degradation in 
solar panel performance. This helps ensure optimal 
system operation, reducing downtime and extending 
the system's lifespan. As a result, the AI-controlled 
system optimizes solar energy usage during peak 
sunlight hours, reducing grid dependency and 
significantly lowering electricity costs for industrial 
operations. The impact includes cost savings through 
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efficient solar energy use, improved energy 
management, reduced waste, and enhanced 
sustainability, as maximizing solar energy reduces 

the industrial carbon footprint and supports 
environmental sustainability goals. 

Policy Frameworks for Enhancing Thermal Efficiency in AI-Optimized Solar MPPT Controllers for 
Renewable Energy Microgrids 
The evolution of policy frameworks for enhancing 
thermal efficiency in AI-optimized solar MPPT 
controllers for renewable energy microgrids has 
progressed in response to advancements in power 
electronics, artificial intelligence, and renewable 
energy integration [72,73,74]]. Early policies 
primarily focused on general energy efficiency 
regulations and incentives for solar energy adoption, 
with minimal emphasis on thermal management in 
MPPT controllers. As renewable energy deployment 
expanded in the 2000s and 2010s, governments 
introduced performance standards for solar inverters 
and power converters, gradually incorporating 
thermal efficiency considerations to reduce energy 
losses [75,76,77,78]. With the rise of AI-driven 

optimization and smart grid technologies in the 
2020s, policymakers have begun addressing the role 
of intelligent thermal management systems in 
enhancing MPPT controller efficiency [79,80]. 
Current regulatory frameworks increasingly 
emphasize AI-based adaptive cooling mechanisms, 
thermal resilience in extreme climates, and grid-
interactive MPPT technologies, ensuring improved 
energy conversion efficiency and system longevity. 
Moving forward, the development of more 
comprehensive policies integrating AI-driven 
thermal optimization, standardized testing protocols, 
and financial incentives will be crucial in accelerating 
the adoption of high-efficiency MPPT controllers in 
renewable energy microgrids. 

Research Findings 
1. AI-Optimized MPPT Controller Design: 

The AI-based MPPT controller developed 
for this study integrates machine learning, 
fuzzy logic, and genetic algorithms to 
dynamically predict and optimize the 
Maximum Power Point (MPP) under 
varying environmental conditions. By 
leveraging historical and real-time solar 
irradiance and temperature data, the system 
continuously adjusts voltage and current 
parameters to ensure maximum power 
extraction from the photovoltaic system. 

2. Enhanced Adaptability and Efficiency: 
Machine learning models, particularly 
regression-based models and artificial neural 
networks (ANNs), were used to predict the 
MPP with high accuracy. The system 
exhibited superior adaptability to 
fluctuations in solar irradiance and 
temperature, resulting in higher energy 
harvesting efficiency compared to 
conventional techniques such as Perturb and 
Observe (P&O) and Incremental 
Conductance (INC). 

3. Fuzzy Logic and Genetic Algorithm 
Integration: Fuzzy logic was utilized to 
manage uncertainties in environmental 
conditions, such as variable cloud cover and 
temperature changes, ensuring smooth 
system operation without steady-state 

oscillations. Genetic algorithms (GA) were 
employed to fine-tune the control 
parameters dynamically, optimizing the 
overall MPPT performance. This 
integration provided real-time adjustments, 
significantly improving the tracking 
accuracy under unpredictable conditions. 

4. Comparative Performance Analysis: The 
AI-driven MPPT controller outperformed 
conventional MPPT techniques in terms of 
efficiency and response time. Under rapidly 
changing environmental conditions, the AI-
based controller exhibited a faster 
convergence rate and fewer oscillations 
around the Maximum Power Point. The 
system’s adaptability and precision resulted 
in a more stable and efficient operation of the 
PV system. 

5. Scalability for Diverse Applications: The 
prototype demonstrated significant potential 
for scalability in various applications, 
including rural electrification and industrial 
energy management. The AI-driven MPPT 
system can be integrated into off-grid solar 
systems, hybrid solar-wind power systems, 
and large-scale industrial applications, 
optimizing energy generation and reducing 
reliance on external power sources. 

CONCLUSION 
The research demonstrates the significant benefits of 
integrating AI-driven MPPT controllers into 
photovoltaic systems, offering a more efficient, 
adaptive, and intelligent solution to power 
optimization. Machine learning, fuzzy logic, and 
genetic algorithms provide enhanced performance by 

enabling real-time adjustments to fluctuations in 
solar irradiance and temperature, ensuring maximum 
power extraction and system stability. The AI-based 
MPPT controller outperforms conventional 
techniques, offering improved efficiency, reduced 
energy losses, and higher adaptability, especially in 
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dynamic environments. This innovative approach 
holds the potential to revolutionize solar energy 
systems, particularly in rural and industrial 
applications, contributing to the advancement of 
sustainable energy solutions. Future work will focus 
on further refining the AI models and expanding the 
application of this technology in various renewable 
energy systems. Among the conventional MPPT, 
optimized adaptive differential conductance (OADC) 
method stands out due to its simplicity, cost-
effectiveness, and ease of implementation whereas 
Scanning Particle Swarm Optimization (SPSO) 
technique emerges as the most effective, owing to its 
high tracking accuracy and ability to achieve real-

time convergence to the Maximum Power Point. 
Despite its remarkable efficiency, SPSO is not without 
drawbacks, including latency in convergence and 
susceptibility to premature convergence. Therefore, 
this research recommends further investigations into 
the Optimized Adaptive Differential Conductance 
(OADC) and Scanning Particle Swarm Optimization 
(SPSO) techniques to address and overcome the 
identified drawbacks. Enhancing these methods will 
improve their efficiency, power conversion 
capabilities, and reliability, ultimately advancing the 
performance of MPPT algorithms in real-world 
applications. 
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