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Abstract: In this work, effects of thermal radiation on Paitle flow of a
reactive power-law fluid of grade three betweentbdgarallel plates through
a saturated porous medium is considered. It is meslthat the fluid reacts
satisfying Arrhenius law. The chemical reactionassumed to be strongly
exothermic. We employed Galerkin weighted residuathod to solve the
resulting non-linear equations. The effects of @asi physical parameters on
the flow system were reported graphically.
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1.0 Introduction

The importance of third grade fluid cannot be owggbasized due to its applications in many
engineering systems such as flow of moisture thHropgrous industrial materials, packed-bed
chemical reactors, preheating coal-water mixtueramic processing, catalytic reactors, polymer
solution, molten plastics, oil recovery processesnention but just a few.

The second grade fluid model is able to predictriienal stress differences which are characteristic
of non-Newtonian fluids. It does not predict tHéeet of shear thinning and thickening phenomena
that many reveal. The third grade fluid models eapable of describing such phenomena. The
differential equations that arise when modeling-N&awtonian incompressible fluid flows are highly
non-linear and complicated. It is well known frommnductive theory of thermal explosion that the
temperature equation expresses the balance betvee¢rgenerated and heat conduction in terms of
standard dimensionless parameter. Physicallyi-taak — Kamenetski parametery is a reflection

of the internal properties of a given system. Imsorecent researches the variation of thermal
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conductivity parameters and power-law fluid weregsidered [8, 9]. And the following are some of
the recent works in this regard.

Yurusoy et al [1] studied entropy analysis for dhgrade fluid flow with Vogel's models of viscosity

in annular pipe. Makinde [2] employed Hermite-Paggroximations to evaluate thermal radiation
effect of inherent irreversibility in a variableseosity channel flow. Jayeoba and Okoya [3] empuloye
analytical approximations to determine the veloeityd temperature fields for steady flow of a third
grade fluid in a pipe. Rilvin and Ericksen [4] aymdd stress deformation relation for isotropic
materials. Szeri and Rajagopal [5] examined thec&dfof variable viscosity parameter and viscous
dissipation parameter on the flow of a Non-Newtanilid between heated parallel plates. Their
results show that the temperature and velocityidigion remain sensibly invariant with respect to
the variable viscosity parameter. Furthermore, haz§] studied the effects of variable viscosity o
the flow velocity and temperature field using sémplicit finite difference scheme of Laminar flow

in a channel filled with saturated porous mediae Tésults show that the velocity field and thedlui
temperature increases as variable viscosity pasaritatreases. Haroon et al [7] examined analysis of
poiseuille flow of a reactive power-law fluid betereparallel plates. The results show that the shear
thinning/thickening behavior depends on the power-index and the pressure gradient. Hayat et
al[8] examined the effect of Joule heating andrtfarradiation in flow of third grade fluid over
radiative surfaceAlso Singh[9] considered the effects of viscoussitiation and variable viscosity effects on
MHD boundary layer flow in porous medium past a ingwertical plate with suctiorMotivated by [7,8] we
consider a reactive Power-law fluid and examinedatfiect of radiating energy.

2.0 Governing Equations

Following Szeri and Rajagopal [5], an incompressibhomogeneous fluid of third grade is
characterized by Cauchy stressof the following form:

r==pl+u(T)A +a,(T)A, +a,(T)A

+ B(T)A + B, (TIAA, + AA]+ B,(T)traz A (1)

where — pl denote the indeterminate part of the stress dtieeteonstraint of incompressibili}y(T)
is the coefficient of viscosity and)’l(T), a, (T) are material moduli, usually referred to as normal
stress coefficients. The kinematic tenséys A, are defined by [4] through

A, =(gradv)+(gradv) @)

A=A+ A (gradv) + (gradv) A, n=23 ®

Here—t denotes material time derivative amds the velocity vector. The above model contaissa a

special subclass, the classical linearly viscoudeh¢the case when all the coefficients expacire
set equal to zero).

The thermodynamics and stability of model (1) hasrbstudied in detail [4]. The thermodynamic
compatibility in the sense that all motions of thed meet the Clausius- Duhem inequality, which is
generally interpreted as a statement of the seleamdf thermodynamics, and the assumption that the
specific Helmholtz free energy of the fluid be anmium when the fluid is in “equilibrium”, places
restrictions on the structure of the constitutigeiaions which model the fluid. It has been sho@in [

that the response function¥,7and q for specific Helmholtz free energy, the stress el heat
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flux, respectively, of an incompressible, homogersediuid of third grade are compatible with
thermodynamics only if

() the viscosity,u(T) is non-negative,u(T) >0, 4

(i) the normal stress coefficiennsl(T)and a, (T) meet the requirements,

a,(T)20-24u(T) B,(T) < ay(T)+a,(T) </ 24u(T) B ) 5)

(i) the material coefficients, (T ), 5, (T )and S,(T)
satisfy 3,(T)=0,3,(T) = 0,5,(T) 20 (6)

(iv) the specific Helmholtz free enerd¥ has the form

W:HDJ(T,L):HDJ(T,O)+M‘L+LT‘2 (7)
4p
In the above expressions
L =grady, (8)

p denotes the density atﬁé{ denotes the trace norm .

In our analysis we assume that the fluid is thewnadhically compatible; hence the stress
constitutive relation (1) reduces to

r=-pl+u(T)A +a,(T)A, +a,(T)A + B(T)(trA?)A,. (9)
3.0 Method of Solution

The flow of a reactive Power-law fluid with varigbthermal conductivity is governed by the
continuity, momentum and energy equations. Wherflthé is incompressible, neglecting the body
forces and thermal conductivity is constant asaioet in [7] the equations take the form

p% =0.S (2.1)

Sis a stress tensor for a Power-law fluid and defias

2.2
S=-pl +/7(trA12)"A1 (22)
When the reactant molecules rearrange to form tbeugts, a chemical reaction occurs and thermal
energy is produced. The volume rate of thermal@®ne®. is in general a complicated function of

pressure, temperature, composition and catalystitgctit is assumed that the fluid behaves like a
non-Newtonian fluid as far as the reactions areceored. The energy equation takes the form

pg—?:S.L—divq+,0r +Q, (2.3)
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wherel is the unit tensor is the apparent viscosity) is the flow behavior indexA, is the Rivlin
Erickson tensorgis the internal energy. We assume that the heatvitetor qis given by Fourier's
law, q=—KOUT , whereK is the thermal conductivity of the materidl,is the temperature an@,

is the chemical reaction terr@,_ = QCOKO(T),

C, is the initial concentration of reactant speci@sis the heat energy and

m 8] 4
K,(T)= J(—ij ex;{——E j = 9% g 2 _4900TY ey gt 2.4)
vh RT oy 3k, dy

where Jis the rate constantk is the Boltzmann’s constant, is the velocity gradientyvis the
vibration frequencyh is the Plank’s number; is the radiating energ¥; is the activation energyR
is the universal gas constant amds a numerical exponent.

Subject to the boundary conditions

u(-h,t)=0,u(h,t)=U (2.5)
T(0,t)=T,,T(ht)=T, (2.6)
Vv =(u(y) 00). T =T(y) (2.7)

The continuity equation is satisfied and usingubkecity profile (2.7) in the momentum and energy,
we obtain

\2nf, 1 /’Iefv ap
2"n(en+)(u)" (v - == =25 2.8
nn+ (o) - == (2.8)
d*T (160°T? 2n+2 :UfVZ op
— = +k |[+2"7(U +—=——+QC,K,(T)==— 2.9
[T ke 2y o A s e ) =2 29)
Following [7, 8], we now introduce the dimensiorslegsriables below
o _ 2n+l _ 3
y:l’u:E,Cl h (Dj %,Da: K2’£:R-|B’€:E(T ZTO), Rd=40:r°°
h \Y 2'n\V dx Vh E RE, k'K
_ ﬁuv2 B _ ’UDVZ 2n/7h2 (MJZFHZ pzﬂ 5: kthTOm—Z EQCOA ei%TO
uh?’ ke T, \h) "7 u’'" VT h"RKyV? (RTZ +T,E)
(2.10)
Substituting (2.10) into (2.8) and (2.9) and draygpthe prime, we obtain
- Mo—c (2.11)

dy Da

2 8
g" (1+ % Rdj + % +Br(u)™? + o1+ £8) e = 0 (2.12)
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The dimensionless boundary conditions:
u(-1)=0,u(1)=16(0)=0, 6(1)=0 (2.15)

We now solve equations (2.13) and (2.14) togethidr the boundary conditions (2.15) numerically
using Galerkin-Weighted Residual Method as follows:

2 2 (’%jy
Letu=) Ae’,6=> Be (2.16)
i=0 i=0

A maple 14 pseudo code was used to perform thatiitercomputation and results are presented in
Figures land 2 as follows:
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Figure 1: Graph of the velocity functionl for various values ofi when
C=10,Br=05Da=20
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Figure 2: Graph of the temperature functiéh against the similarity variablof
when/A =05 £20Br=0n=0Da= 05.
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Figure 4: Graph of the temperature functiéh against the similarity variablg of

when/A =05 £€=20Br=0n=0Da= 05
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Figure5: Graph of the velocity functionl for various values oDa when
C=20Br=1506=10
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Figure 6: Graph of the temperature functiéh against the similarity variablg of
whenA =15 £>20Br=0n=00 =R, =10.
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Figure 7: Graph of the temperature functiéh against the similarity variablg of
whenA =15 £€20Br=0n=0R, =Da=10.

4.0 Discussion of Results/Conclusion

We consider a reactive power-law fluid with varalthermal radiation through a saturated porous
medium. From Figures1,3 &5 the results show thatfluid velocity increases with increase in each

of Power-law indexn ,radiation parameteR, and Darcy numbeDa . Figures 2, 4, 6 & 7 show that
the temperature profile decreases with increassaah of Power-law indexi, radiation parameter
R,, Frank — Kamenetskparameterd and Darcy numbeba .

Conclusion

It is observed that the fluid temperature decreagdls increase in each of Power-law index
radiation parameteR,, Frank — Kamenetskii parametérand Darcy numbeDa. We observed
that there is transient increase in the fluid viyowith increase in each of Power-law index
sradiation parameteRR,, & Frank — Kamenetskii parametér, non-Newtonian parametef\ ,
Brinkman number Br and Darcy numbebDa which decreases the porosity in the system of flow.

For engineering purpose, the flow model of our Eobrepresents the oils well and as radiation
parameterR; is increasing there is quick recovery of oil freine oils well. Also, the results of this

problem are of great interest in production procgsdor the safety of life and proper handlingtioé
materials during processing.
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